4 research outputs found

    Central nervous system mast cells in peripheral inflammatory nociception

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional aspects of mast cell-neuronal interactions remain poorly understood. Mast cell activation and degranulation can result in the release of powerful pro-inflammatory mediators such as histamine and cytokines. Cerebral dural mast cells have been proposed to modulate meningeal nociceptor activity and be involved in migraine pathophysiology. Little is known about the functional role of spinal cord dural mast cells. In this study, we examine their potential involvement in nociception and synaptic plasticity in superficial spinal dorsal horn. Changes of lower spinal cord dura mast cells and their contribution to hyperalgesia are examined in animal models of peripheral neurogenic and non-neurogenic inflammation.</p> <p>Results</p> <p>Spinal application of supernatant from activated cultured mast cells induces significant mechanical hyperalgesia and long-term potentiation (LTP) at spinal synapses of C-fibers. Lumbar, thoracic and thalamic preparations are then examined for mast cell number and degranulation status after intraplantar capsaicin and carrageenan. Intradermal capsaicin induces a significant percent increase of lumbar dural mast cells at 3 hours post-administration. Peripheral carrageenan in female rats significantly increases mast cell density in the lumbar dura, but not in thoracic dura or thalamus. Intrathecal administration of the mast cell stabilizer sodium cromoglycate or the spleen tyrosine kinase (Syk) inhibitor BAY-613606 reduce the increased percent degranulation and degranulated cell density of lumbar dural mast cells after capsaicin and carrageenan respectively, without affecting hyperalgesia.</p> <p>Conclusion</p> <p>The results suggest that lumbar dural mast cells may be sufficient but are not necessary for capsaicin or carrageenan-induced hyperalgesia.</p

    FXR1P Limits Long-Term Memory, Long-Lasting Synaptic Potentiation, and De Novo GluA2 Translation

    Get PDF
    SummaryTranslational control of mRNAs allows for rapid and selective changes in synaptic protein expression that are required for long-lasting plasticity and memory formation in the brain. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein that controls mRNA translation in nonneuronal cells and colocalizes with translational machinery in neurons. However, its neuronal mRNA targets and role in the brain are unknown. Here, we demonstrate that removal of FXR1P from the forebrain of postnatal mice selectively enhances long-term storage of spatial memories, hippocampal late-phase long-term potentiation (L-LTP), and de novo GluA2 synthesis. Furthermore, FXR1P binds specifically to the 5′ UTR of GluA2 mRNA to repress translation and limit the amount of GluA2 that is incorporated at potentiated synapses. This study uncovers a mechanism for regulating long-lasting synaptic plasticity and spatial memory formation and reveals an unexpected divergent role of FXR1P among Fragile X proteins in brain plasticity
    corecore