52 research outputs found

    Lipoprotein(a) has no major impact on calcification activity in patients with mild to moderate aortic valve stenosis

    Get PDF
    OBJECTIVE: To assess whether patients with aortic valve stenosis (AS) with elevated lipoprotein(a) (Lp(a)) are characterised by increased valvular calcification activity compared with those with low Lp(a). METHODS: We performed (18)F-sodium fluoride ((18)F-NaF) positron emission tomography/CT in patients with mild to moderate AS (peak aortic jet velocity between 2 and 4 m/s) and high versus low Lp(a) (>50 mg/dL vs <50 mg/dL, respectively). Subjects were matched according to age, gender, peak aortic jet velocity and valve morphology. We used a target to background ratio with the most diseased segment approach to compare (18)F-NaF uptake. RESULTS: 52 individuals (26 matched pairs) were included in the analysis. The mean age was 66.4±5.5 years, 44 (84.6%) were men, and the mean aortic valve velocity was 2.80±0.49 m/s. The median Lp(a) was 79 (64–117) mg/dL and 7 (5–11) mg/dL in the high and low Lp(a) groups, respectively. Systolic blood pressure and low-density-lipoprotein cholesterol (corrected for Lp(a)) were significantly higher in the low Lp(a) group (141±12 mm Hg vs 128±12 mm Hg, 2.5±1.1 mmol/L vs 1.9±0.8 mmol/L). We found no difference in valvular (18)F-NaF uptake between the high and low Lp(a) groups (3.02±1.26 vs 3.05±0.96, p=0.902). Linear regression analysis showed valvular calcium score to be the only significant determinant of valvular (18)F-NaF uptake (β=0.63; 95% CI 0.38 to 0.88 per 1000 Agatston unit increase, p<0.001). Lp(a) was not associated with (18)F-NaF uptake (β=0.17; 95% CI −0.44 to 0.88, p=0.305 for the high Lp(a) group). CONCLUSION: Among patients with mild to moderate AS, calcification activity is predominantly determined by established calcium burden. The results do not support our hypothesis that Lp(a) is associated with valvular (18)F-NaF uptake

    Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention.

    Get PDF
    AIMS: In the era of personalized medicine, it is of utmost importance to be able to identify subjects at the highest cardiovascular (CV) risk. To date, single biomarkers have failed to markedly improve the estimation of CV risk. Using novel technology, simultaneous assessment of large numbers of biomarkers may hold promise to improve prediction. In the present study, we compared a protein-based risk model with a model using traditional risk factors in predicting CV events in the primary prevention setting of the European Prospective Investigation (EPIC)-Norfolk study, followed by validation in the Progressione della Lesione Intimale Carotidea (PLIC) cohort. METHODS AND RESULTS: Using the proximity extension assay, 368 proteins were measured in a nested case-control sample of 822 individuals from the EPIC-Norfolk prospective cohort study and 702 individuals from the PLIC cohort. Using tree-based ensemble and boosting methods, we constructed a protein-based prediction model, an optimized clinical risk model, and a model combining both. In the derivation cohort (EPIC-Norfolk), we defined a panel of 50 proteins, which outperformed the clinical risk model in the prediction of myocardial infarction [area under the curve (AUC) 0.754 vs. 0.730; P < 0.001] during a median follow-up of 20 years. The clinically more relevant prediction of events occurring within 3 years showed an AUC of 0.732 using the clinical risk model and an AUC of 0.803 for the protein model (P < 0.001). The predictive value of the protein panel was confirmed to be superior to the clinical risk model in the validation cohort (AUC 0.705 vs. 0.609; P < 0.001). CONCLUSION: In a primary prevention setting, a proteome-based model outperforms a model comprising clinical risk factors in predicting the risk of CV events. Validation in a large prospective primary prevention cohort is required to address the value for future clinical implementation in CV prevention

    Association of Lipoprotein(a) With Atherosclerotic Plaque Progression

    Get PDF
    BACKGROUND: Lipoprotein(a) [Lp(a)] is associated with increased risk of myocardial infarction, although the mechanism for this observation remains uncertain. OBJECTIVES: This study aims to investigate whether Lp(a) is associated with adverse plaque progression. METHODS: Lp(a) was measured in patients with advanced stable coronary artery disease undergoing coronary computed tomography angiography at baseline and 12 months to assess progression of total, calcific, noncalcific, and low-attenuation plaque (necrotic core) in particular. High Lp(a) was defined as Lp(a) ≥ 70 mg/dL. The relationship of Lp(a) with plaque progression was assessed using linear regression analysis, adjusting for body mass index, segment involvement score, and ASSIGN score (a Scottish cardiovascular risk score comprised of age, sex, smoking, blood pressure, total and high-density lipoprotein [HDL]–cholesterol, diabetes, rheumatoid arthritis, and deprivation index). RESULTS: A total of 191 patients (65.9 ± 8.3 years of age; 152 [80%] male) were included in the analysis, with median Lp(a) values of 100 (range: 82 to 115) mg/dL and 10 (range: 5 to 24) mg/dL in the high and low Lp(a) groups, respectively. At baseline, there was no difference in coronary artery disease severity or plaque burden. Patients with high Lp(a) showed accelerated progression of low-attenuation plaque compared with low Lp(a) patients (26.2 ± 88.4 mm(3) vs −0.7 ± 50.1 mm(3); P = 0.020). Multivariable linear regression analysis confirmed the relation between Lp(a) and low-attenuation plaque volume progression (β = 10.5% increase for each 50 mg/dL Lp(a), 95% CI: 0.7%-20.3%). There was no difference in total, calcific, and noncalcific plaque volume progression. CONCLUSIONS: Among patients with advanced stable coronary artery disease, Lp(a) is associated with accelerated progression of coronary low-attenuation plaque (necrotic core). This may explain the association between Lp(a) and the high residual risk of myocardial infarction, providing support for Lp(a) as a treatment target in atherosclerosis

    Lipoprotein(a) measurement in clinical practice

    No full text

    New and Emerging Therapies for Reduction of LDL-Cholesterol and Apolipoprotein B: JACC Focus Seminar 1/4

    No full text
    Adding to the foundation of statins, ezetimibe and proprotein convertase subtilisin–kexin type 9 inhibitors (PCSK9i), novel, emerging low-density lipoprotein cholesterol (LDL-C)–lowering therapies are under development for the prevention of cardiovascular disease. Inclisiran, a small interfering RNA molecule that inhibits PCSK9, only needs to be dosed twice a year and has the potential to help overcome current barriers to persistence and adherence to lipid-lowering therapies. Bempedoic acid, which lowers LDL-C upstream from statins, provides a novel alternative for patients with statin intolerance. Angiopoetin-like 3 protein (ANGPTL3) inhibitors have been shown to provide potent LDL-C lowering in patients with homozygous familial hypercholesterolemia without major adverse effects as seen with lomitapide and mipomersen, and may reduce the need for apheresis. Finally, CETP inhibitors may yet be effective with the development of obicetrapib. These novel agents provide the clinician the tools to effectively lower LDL-C across the entire range of LDL-C–induced elevation of cardiovascular risk, from primary prevention and secondary prevention to null-null homozygous familial hypercholesterolemia patients

    Cholesteryl ester transfer protein inhibitors: from high-density lipoprotein cholesterol to low-density lipoprotein cholesterol lowering agents?

    No full text
    Cholesteryl ester transfer protein (CETP) is a liver-synthesized glycoprotein whose main functions are facilitating transfer of both cholesteryl esters from high-density lipoprotein (HDL) particles to apolipoprotein B (apoB)-containing particles as well as transfer of triglycerides from apoB-containing particles to HDL particles. Novel crystallographic data have shown that CETP exchanges lipids in the circulation by a dual molecular mechanism. Recently, it has been suggested that the atherosclerotic cardiovascular disease (ASCVD) benefit from CETP inhibition is the consequence of the achieved low-density lipoprotein cholesterol (LDL-C) and apoB reduction, rather than through the HDL cholesterol (HDL-C) increase. The use of CETP inhibitors is supported by genetic evidence from Mendelian randomization studies, showing that LDL-C lowering by CETP gene variants achieves equal ASCVD risk reduction as LDL-C lowering through gene proxies for statins, ezetimibe, and proprotein convertase subtilisin-kexin Type 9 inhibitors. Although first-generation CETP inhibitors (torcetrapib, dalcetrapib) were mainly raising HDL-C or had off-target effects, next generation CETP inhibitors (anacetrapib, evacetrapib) were also effective in reducing LDL-C and apoB and have been proven safe. Anacetrapib was the first CETP inhibitor to be proven effective in reducing ASCVD risk. In addition, CETP inhibitors have been shown to lower the risk of new-onset diabetes, improve glucose tolerance, and insulin sensitivity. The newest-generation CETP inhibitor obicetrapib, specifically designed to lower LDL-C and apoB, has achieved significant reductions of LDL-C up to 45%. Obicetrapib, about to enter phase III development, could become the first CETP inhibitor as add-on therapy for patients not reaching their guideline LDL-C targets

    New and Emerging Therapies for Reduction of LDL-Cholesterol and Apolipoprotein B: JACC Focus Seminar 1/4

    No full text
    Adding to the foundation of statins, ezetimibe and proprotein convertase subtilisin–kexin type 9 inhibitors (PCSK9i), novel, emerging low-density lipoprotein cholesterol (LDL-C)–lowering therapies are under development for the prevention of cardiovascular disease. Inclisiran, a small interfering RNA molecule that inhibits PCSK9, only needs to be dosed twice a year and has the potential to help overcome current barriers to persistence and adherence to lipid-lowering therapies. Bempedoic acid, which lowers LDL-C upstream from statins, provides a novel alternative for patients with statin intolerance. Angiopoetin-like 3 protein (ANGPTL3) inhibitors have been shown to provide potent LDL-C lowering in patients with homozygous familial hypercholesterolemia without major adverse effects as seen with lomitapide and mipomersen, and may reduce the need for apheresis. Finally, CETP inhibitors may yet be effective with the development of obicetrapib. These novel agents provide the clinician the tools to effectively lower LDL-C across the entire range of LDL-C–induced elevation of cardiovascular risk, from primary prevention and secondary prevention to null-null homozygous familial hypercholesterolemia patients
    • …
    corecore