11 research outputs found

    Early activation of pro-fibrotic WNT5A in sepsis-induced acute lung injury

    No full text
    Abstract Introduction The mechanisms of lung repair and fibrosis in the acute respiratory distress syndrome (ARDS) are poorly known. Since the role of WNT/β-catenin signaling appears to be central to lung healing and fibrosis, we hypothesized that this pathway is activated very early in the lungs after sepsis. Methods We tested our hypothesis using a three-step experimental design: (1) in vitro lung cell injury model with human bronchial epithelial BEAS-2B and lung fibroblasts (MRC-5) cells exposed to endotoxin for 18 hours; (2) an animal model of sepsis-induced ARDS induced by cecal ligation and perforation, and (3) lung biopsies from patients who died within the first 24 hours of septic ARDS. We examined changes in protein levels of target genes involved in the Wnt pathway, including WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, matrix metalloproteinase-7 (MMP7), cyclin D1, and vascular endothelial growth factor (VEGF) by Western blotting and immunohistochemistry. Finally, we validated the main gene targets of this pathway in experimental animals and human lungs. Results Protein levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, total β-catenin, MMP7, cyclin D1, and VEGF increased after endotoxin stimulation in BEAS-2B and MRC-5 cells. Lungs from septic animals and from septic humans demonstrated acute lung inflammation, collagen deposition, and marked increase of WNT5A and MMP7 protein levels. Conclusions Our findings suggest that the WNT/β-catenin signaling pathway is activated very early in sepsis-induced ARDS and could play an important role in lung repair and fibrosis. Modulation of this pathway might represent a potential target for treatment for septic and ARDS patients

    Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury

    No full text
    Abstract Introduction Most patients with sepsis and acute lung injury require mechanical ventilation to improve oxygenation and facilitate organ repair. Mast cells are important in response to infection and resolution of tissue injury. Since tryptase secreted from mast cells has been associated with tissue fibrosis, we hypothesized that tryptase would be involved in the early development of ventilator-induced pulmonary fibrosis in a clinically relevant model of sepsis-induced lung injury. Methods Prospective, randomized, controlled animal study using Sprague-Dawley rats. Sepsis was induced by cecal ligation and perforation. Animals were randomized to spontaneous breathing or two ventilatory strategies for 4 h: protective ventilation with tidal volume (VT) = 6 ml/kg plus 10 cmH2O positive end-expiratory pressure (PEEP) or injurious ventilation with VT = 20 ml/kg plus 2 cmH2O PEEP. Healthy, non-ventilated animals served as non-septic controls. We studied the following end points: histology, serum cytokine levels, hydroxyproline content, tryptase and proteinase-activated receptor-2 (PAR-2) protein level in lung homogenates, and tryptase and PAR-2 immunohistochemical localization in the lungs. Results All septic animals developed acute lung injury. Animals ventilated with high VT had a significant increase of pulmonary fibrosis, hydroxyproline content, tryptase and PAR-2 protein levels compared to septic controls (P <0.0001). However, protective ventilation attenuated sepsis-induced lung injury and decreased lung tryptase and PAR-2 protein levels. Immunohistochemical staining confirmed the presence of tryptase and PAR-2 in the lungs. Conclusions Mechanical ventilation modified tryptase and PAR-2 in injured lungs. Increased levels of these proteins were associated with development of sepsis and ventilator-induced pulmonary fibrosis early in the course of sepsis-induced lung injury

    Soluble platelet-endothelial cell adhesion molecule-1, a biomarker of ventilator-induced lung injury

    No full text
    Abstract Introduction Endothelial cell injury is an important component of acute lung injury. Platelet-endothelial cell adhesion molecule-1 (PECAM1) is a transmembrane protein that connects endothelial cells to one another and can be detected as a soluble, truncated protein (sPECAM1) in serum. We hypothesized that injurious mechanical ventilation (MV) leads to shedding of PECAM1 from lung endothelial cells resulting in increasing sPECAM1 levels in the systemic circulation. Methods We studied 36 Sprague–Dawley rats in two prospective, randomized, controlled studies (healthy and septic) using established animal models of ventilator-induced lung injury. Animals (n = 6 in each group) were randomized to spontaneous breathing or two MV strategies: low tidal volume (VT) (6 ml/kg) and high-VT (20 ml/kg) on 2 cmH2O of positive end-expiratory pressure (PEEP). In low-VT septic animals, 10 cmH2O of PEEP was applied. We performed pulmonary histological and physiological evaluation and measured lung PECAM1 protein content and serum sPECAM1 levels after four hours ventilation period. Results High-VT MV caused severe lung injury in healthy and septic animals, and decreased lung PECAM1 protein content (P < 0.001). Animals on high-VT had a four- to six-fold increase of mean sPECAM1 serum levels than the unventilated counterpart (35.4 ± 10.4 versus 5.6 ± 1.7 ng/ml in healthy rats; 156.8 ± 47.6 versus 35.6 ± 12.6 ng/ml in septic rats) (P < 0.0001). Low-VT MV prevented these changes. Levels of sPECAM1 in healthy animals on high-VT MV paralleled the sPECAM1 levels of non-ventilated septic animals. Conclusions Our findings suggest that circulating sPECAM1 may represent a promising biomarker for the detection and monitoring of ventilator-induced lung injury

    Intraoperative positive end-expiratory pressure and postoperative pulmonary complications: a patient-level meta-analysis of three randomised clinical trials.

    No full text

    Global attitudes in the management of acute appendicitis during COVID-19 pandemic: ACIE Appy Study

    No full text
    Background: Surgical strategies are being adapted to face the COVID-19 pandemic. Recommendations on the management of acute appendicitis have been based on expert opinion, but very little evidence is available. This study addressed that dearth with a snapshot of worldwide approaches to appendicitis. Methods: The Association of Italian Surgeons in Europe designed an online survey to assess the current attitude of surgeons globally regarding the management of patients with acute appendicitis during the pandemic. Questions were divided into baseline information, hospital organization and screening, personal protective equipment, management and surgical approach, and patient presentation before versus during the pandemic. Results: Of 744 answers, 709 (from 66 countries) were complete and were included in the analysis. Most hospitals were treating both patients with and those without COVID. There was variation in screening indications and modality used, with chest X-ray plus molecular testing (PCR) being the commonest (19\ub78 per cent). Conservative management of complicated and uncomplicated appendicitis was used by 6\ub76 and 2\ub74 per cent respectively before, but 23\ub77 and 5\ub73 per cent, during the pandemic (both P < 0\ub7001). One-third changed their approach from laparoscopic to open surgery owing to the popular (but evidence-lacking) advice from expert groups during the initial phase of the pandemic. No agreement on how to filter surgical smoke plume during laparoscopy was identified. There was an overall reduction in the number of patients admitted with appendicitis and one-third felt that patients who did present had more severe appendicitis than they usually observe. Conclusion: Conservative management of mild appendicitis has been possible during the pandemic. The fact that some surgeons switched to open appendicectomy may reflect the poor guidelines that emanated in the early phase of SARS-CoV-2
    corecore