2 research outputs found

    Modulating the RFamide-related peptide- 3/G protein-coupled receptor 147 signaling pathway with nourishing Yin-removing fire herbal mixture to alleviate precocious puberty in female rats: An experimental study

    Get PDF
    Background: Precocious puberty (PP) involves early activation of the hypothalamic gonadotropin-releasing hormone (GnRH) generator. The RFamide-related peptide/G protein-coupled receptor 147 (RFRP3/GPR147) signaling pathway is vital in inhibiting GnRH and delaying puberty onset. The nourishing Yin-removing fire (NYRF) herbal mixture has shown promising results in treating PP. Objective: This study aimed to assess the impact of the NYRF herbal mixture on the RFRP3/GPR147 signaling pathway in the hypothalamus and its potential in alleviating PP in female rats. Materials and Methods: In a controlled experiment, 24 female Sprague-Dawley rats (means ± SD weight = 11.20 ± 0.69 gr and age = postnatal day [PD5]) were divided into normal, model, normal saline, and NYRF groups (n = 6/each). PP was induced in the model, normal saline, and NYRF groups by subcutaneous injection of danazol at PD5. The NYRF herbal mixture or normal saline was administered from PD15. Serum sex hormone levels and hypothalamic samples were collected for mRNA and protein expression at PD30. Results: In the model group, hypothalamic GnRH and kisspeptin levels increased, while RFRP3 and GPR147 levels decreased, luteinizing hormone levels elevated, reproductive organ coefficients increased, and the vagina opened earlier compared to the normal group. Conversely, the NYRF group exhibited lower GnRH and kisspeptin levels but higher RFRP3 levels in the hypothalamus. Serum luteinizing hormone levels were reduced, reproductive organ coefficients were reduced, and the vaginal opening was delayed compared to the model and normal saline groups. Conclusion: The NYRF herbal mixture delayed sexual development in rats with PP by hypothalamic upregulating RFRP3 and downregulating GnRH and kisspeptin. Key words: Nourishing Yin-removing fire, RFamide-related peptide-3, G proteincoupled receptor 147, Hypothalamus, Puberty, Precocious.&nbsp

    Bibliometric Analysis of Global Research Output on Antimicrobial Resistance among Pneumonia Pathogens (2013–2023)

    No full text
    Antimicrobial resistance (AMR) is a pressing global concern, posing significant challenges to the effective treatment of infections, including pneumonia. This bibliometric analysis aims to investigate the research output on AMR among pneumonia pathogens from 2013 to 2023. Data were extracted from the Web of Science Core Collection (WOS-CC) using an inclusive search strategy. The analysis included 152 relevant studies published in 99 different sources, involving 988 authors and yielding an average of 16.33 citations per document over the past decade. The findings reveal a notable increase in research on AMR among pneumonia pathogens, indicating a growing awareness of this critical issue. Collaborative studies were prevalent, with the majority of authors engaging in joint research efforts. Bradford’s Law identified twelve core journals that were instrumental in disseminating research in this field, with “Medicine” emerging as the most prolific journal. The USA and China emerged as the leading contributors, while Germany displayed a strong inclination towards collaborative research. Intermountain Medical Center, Saitama Medical University, and Udice-French Research Universities were the most productive institutions, and Yayan J. and Rasche K. were the top authors. Furthermore, the analysis identified commonly encountered microorganisms such as Acinetobacter baumanii and Klebsiella pneumoniae in the context of AMR. Time-based analysis of keywords highlighted the significance of terms like “community-acquired pneumonia” and “ventilator-associated pneumonia”. Overall, this comprehensive study sheds light on the global research landscape of AMR among pneumonia pathogens. The insights gained from this analysis are essential for guiding future research priorities and collaborative efforts to combat AMR effectively and improve treatment outcomes for pneumonia and related infections. As the frequency of reports concerning resistance among pneumonia pathogens, notably A. baumannii and K. pneumoniae, continues to rise, there is an immediate requirement for pharmaceutical manufacturers and healthcare providers to respond proactively and ready themselves for the forthcoming implications of this matter. It also underscores the importance of knowledge dissemination and evidence-based interventions to address this growing public health challenge. However, the study acknowledges the limitations associated with using a single publication database and encourages the inclusion of data from other sources in future research
    corecore