11 research outputs found

    Composite Material Based on Polypropylene and Modified Natural Fillers

    No full text
    The work presents the results of a comprehensive study on obtaining compositions based on polypropylene and natural fillers modified by enzymatic preparations under high-shear forces. The experiment protocol includes determining the modification time and the ratio of water volume to the mass of natural filler (hydro modulus) during modification, which turned out to be different for each type of filler. Physical and mechanical analyses were conducted to evaluate the operational characteristics of the obtained composites, with particular attention given to comparing the modified compositions with their unmodified counterparts. The time and hydro module of the enzymatic modification of the natural fillers under consideration were investigated, which turned out to be different for each type of filler. It was found that surface modification of natural fillers improves mechanical properties; namely, the tensile strength of composites with wood and sunflower fillers increases by 10%, and the impact viscosity of composites also increases by 12% with wood and sunflower fillers. Water absorption decreases in composites, after 2 h boiling, with wood flour by 30% and with rice husk by 10%. After a 14-day test at room temperature, water absorption decreases by more than 30% in composites with rice husk. When determining the free surface energy of composites, it was found that the modification of the filler reduces the polarity of the composites in all samples, which can be interpreted as an improvement in the interaction between the filler and the polymer matrix. The findings of this research have important implications for the development of advanced polymeric materials that can be used in a wide range of applications, including automotive, aerospace, and construction industries. The results underscore the importance of surface modifications to optimize the properties of polymeric composites and provide valuable insights into the role of natural fillers in enhancing the performance of these materials

    The Reactivity of Azidonitrobenzofuroxans towards 1,3-Dicarbonyl Compounds: Unexpected Formation of Amino Derivative via the Regitz Diazo Transfer and Tautomerism Study

    No full text
    Herein, we report on the reaction of nitro-substituted azidobenzofuroxans with 1,3-dicarbonyl compounds in basic media. The known reactions of benzofuroxans and azidofuroxans with 1,3-dicarbonyl compounds in the presence of bases are the 1,3-dipolar cycloaddition and the Beirut reaction. In contrast with this, azidonitrobenzofuroxan reacts with 1,3-carbonyl compounds through Regitz diazo transfer, which is the first example of this type of reaction for furoxan derivatives. This difference is seemingly due to the strong electron-withdrawing effect of the superelectrophilic azidonitrobenzofuroxan, which serves as the azido transfer agent rather than 1,3-dipole in this case

    Synthesis and investigation of antimicrobial activity of compounds derived from benzo[C][1,2,5]oxadiazole-1-oxides and phenolates

    No full text
    <p>(Di)chloro(di)nitrobenzofuroxans form substitution products involving carbon atoms with phenolates in isopropyl alcohol medium. In the case of 4,6-dinitro-5,7-dichlorobenzofuroxan, besides replacement of one chlorine atom and the formation of <i>C</i>-bonded product, we observed the hydrolysis of the second chlorine and replacement of it by hydroxyl group. Products of reaction of 4,6-dichloro-5-nitrobenzofuroxan with phenolates display excellent antimicrobial activity and have dual action, both against bacteria and fungi.</p

    Water-Soluble Salts Based on Benzofuroxan Derivatives&mdash;Synthesis and Biological Activity

    No full text
    A series of novel water-soluble salts of benzofuroxans was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan with various amines. The salts obtained showed good effectiveness of the pre-sowing treatment of seeds of agricultural crops at concentrations of 20&ndash;40 mmol. In some cases, the seed treatment with salts leads not only to improved seed germination, but also to the suppression of microflora growth. Additionally, their anti-cancer activityin vitrohas been researched. The compounds with morpholine fragments or a fragment of N-dimethylpropylamine, demonstrated the highest cytotoxic activity, which is in good correlation with the ability to inhibit the glycolysis process in tumor cells. Two compounds 4e and 4g were selected for further experiments using laboratory animals. It was found that the lethal dose of 50% (LD50) is 22.0 &plusmn; 1.33 mg/kg for 4e and 13.75 &plusmn; 1.73 mg/kg for 4g, i.e., compound 4e is two times less toxic than 4g, according to the mouse model in vivo. It was shown that the studied compounds exhibit antileukemia activity after a single intraperitoneal injection at doses from 1.25 to 5 mg/kg, as a result of which the average lifespan of animals with a P388 murine leukemia tumor increases from 20 to 28%. Thus, the water-soluble salts of benzofuroxans can be considered as promisingcandidates for further development, both as anti-cancer agents and as stimulants for seed germination and regulators of microflora crop growth

    Synthesis of Novel 2-(Het)arylpyrrolidine Derivatives and Evaluation of Their Anticancer and Anti-Biofilm Activity

    No full text
    A library of novel 2-(het)arylpyrrolidine-1-carboxamides were obtained via a modular approach based on the intramolecular cyclization/Mannich-type reaction of N-(4,4-diethoxybutyl)ureas. Their anti-cancer activities both in vitro and in vivo were tested. The in vitro activity of some compounds towards M-Hela tumor cell lines was twice that of the reference drug tamoxifen, whereas cytotoxicity towards normal Chang liver cell did not exceed the tamoxifen toxicity. In vivo studies showed that the number of surviving animals on day 60 of observation was up to 83% and increased life span (ILS) was up to 447%. Additionally, some pyrrolidine-1-carboxamides possessing a benzofuroxan moiety obtained were found to effectively suppress bacterial biofilm growth. Thus, these compounds are promising candidates for further development both as anti-cancer and anti-bacterial agents

    Diverse Biological Activity of Benzofuroxan/Sterically Hindered Phenols Hybrids

    No full text
    Combining two pharmacophores in a molecule can lead to useful synergistic effects. Herein, we show hybrid systems that combine sterically hindered phenols with dinitrobenzofuroxan fragments exhibit a broad range of biological activities. The modular assembly of such phenol/benzofuroxan hybrids allows variations in the phenol/benzofuroxan ratio. Interestingly, the antimicrobial activity only appears when at least two benzofuroxan moieties are introduced per phenol. The most potent of the synthesized compounds exhibit high cytotoxicity against human duodenal adenocarcinoma (HuTu 80), human breast adenocarcinoma (MCF-7), and human cervical carcinoma cell lines. This toxicity is associated with the induction of apoptosis via the internal mitochondrial pathway and an increase in ROS production. Encouragingly, the index of selectivity relative to healthy tissues exceeds that for the reference drugs Doxorubicin and Sorafenib. The biostability of the leading compounds in whole mice blood is sufficiently high for their future quantification in biological matrices

    Superelectrophilic Activation of Phosphacoumarins towards Weak Nucleophiles via Brønsted Acid Assisted Brønsted Acid Catalysis

    No full text
    The electrophilic activation of various substrates via double or even triple protonation in superacidic media enables reactions with extremely weak nucleophiles. Despite the significant progress in this area, the utility of organophosphorus compounds as superelectrophiles still remains limited. Additionally, the most common superacids require a special care due to their high toxicity, exceptional corrosiveness and moisture sensitivity. Herein, we report the first successful application of the “Brønsted acid assisted Brønsted acid” concept for the superelectrophilic activation of 2-hydroxybenzo[e][1,2]oxaphosphinine 2-oxides (phosphacoumarins). The pivotal role is attributed to the tendency of the phosphoryl moiety to form hydrogen-bonded complexes, which enables the formation of dicationic species and increases the electrophilicity of the phosphacoumarin. This unmasks the reactivity of phosphacoumarins towards non-activated aromatics, while requiring only relatively non-benign trifluoroacetic acid as the reaction medium
    corecore