7 research outputs found

    Serotonin 5-HT7 receptor is a biomarker poor prognostic factor and induces proliferation of triple-negative breast cancer cells through FOXM1

    No full text
    Background Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer and associated with poor prognosis and shorter survival due to significant genetic heterogeneity, drug resistance and lack of effective targeted therapeutics. Therefore, novel molecular targets and therapeutic strategies are needed to improve patient survival. Serotonin (5-hydroxytryptamine, 5-HT) has been shown to induce growth stimulatory effects in breast cancer. However, the molecular mechanisms by which 5-HT exerts its oncogenic effects in TNBC still are not well understood

    Flavopiridol Suppresses Cell Proliferation and Migration and Induces Apoptotic Cell Death by Inhibiting Oncogenic FOXM1 Signaling in IDH Wild-Type and IDH-Mutant GBM Cells

    No full text
    Glioblastoma multiforme (GBM) remains one of the most challenging solid cancers to treat due to its highly aggressive and drug-resistant nature. Flavopiridol is synthetic flavone that was recently approved by the FDA for the treatment of acute myeloid leukemia. Flavopiridol exhibits antiproliferative activity in several solid cancer cells and currently evaluated in clinical trials in several solid and hematological cancers. In this study, we investigated the molecular mechanisms underlying antiproliferative effects of flavopiridol in GBM cell lines with wild-type and mutant encoding isocitrate dehydrogenase 1 (IDH1). We found that flavopiridol inhibits proliferation, colony formation, and migration and induces apoptosis in IDH1 wild-type and IDH-mutant cells through inhibition of FOXM1 oncogenic signaling. Furthermore, flavopiridol treatment also inhibits of NF-KB, mediators unfolded protein response (UPR), including, GRP78, PERK and IRE1α, and DNA repair enzyme PARP, which have been shown to be potential therapeutic targets by downregulating FOXM1 in GBM cells. Our findings suggest for the first time that flavopiridol suppresses proliferation, survival, and migration and induces apoptosis in IDH1 wild-type and IDH1-mutant GBM cells by targeting FOXM1 oncogenic signaling which also regulates NF-KB, PARP, and UPR response in GBM cells. Flavopiridol may be a potential novel therapeutic strategy in the treatment of patients IDH1 wild-type and IDH1-mutant GBM

    LC3 and Beclin-1 as Markers of Autophagic Activity in Breast Cancer

    No full text
    Autophagy is a catabolic pathway meaning "self-eating" that facilitates nutrient recycling from damaged and aged organelles and other impaired cellular components through lysosomal degradation. Regulation of this process has been associated with the development of cancer. It can play different roles at different tumors and developmental stages of tumors. In breast cancer, similarly, autophagy functions as a mechanism promoting survival or leading to death. Whereas, it is very important to define the role of autophagy as an effective treatment strategy in breast cancer cells. Therefore, in this review, the role of inhibited autophagy is discussed with specific RNAs targeting Beclin-1 and LC3 genes in breast cancer

    Thymoquinone improves testicular damage and sperm quality in experimentally varicocele-induced adolescent rats

    No full text
    The aim of this study was to investigate the protective and therapeutic effects of thymoquinone against the negative effects of varicocele on testicular tissue and sperm morphology. Five groups were formed by random selection from a total of 40 adult male Wistar rats (n = 8). Thymoquinone (5 mg/kg/day) was administered intraperitoneally to the varicocele-dimethyl sulfoxide-olive oil-thymoquinone (VT) group and the sham-thymoquinone group. At the end of the 60th day, all groups were anaesthetised and the left testis was removed from the body quickly. One half of the testis tissue, which was divided into two, was separated for biochemical and Western blot analysis, while the other half were fixed in Bouin's fixative. As a result of biochemical, molecular and histopathological analyses, a statistically significant increase was found in the varicocele group testicular tissues in the malondialdehyde level, apoptotic index, Bax expression, cytochrome c expression and Bax/Bcl-2 ratio compared with the sham group. In addition, histopathological changes characterised by partial or complete degeneration of the germinal epithelium were observed in the seminiferous tubules in the same group. Total oxidant status level and sperm count with abnormal morphology increased in varicocele group, whereas total antioxidant status level decreased. In the VT group, all of the biochemical, molecular and histopathological changes detected in the varicocele group were statistically significantly reduced. When the findings obtained in this study are evaluated, it can be said that thymoquinone has the potential to be used as a preventive and therapeutic pharmacological agent in the medical treatment of varicocele. Although the exact mechanism of action of thymoquinone has not been fully elucidated, the findings obtained in this study support the view that thymoquinone showed a cytoprotective effect by reducing apoptosis, oxidative stress and lipid peroxidation

    FOXM1 plays a role in autophagy by transcriptionally regulating Beclin-1 and LC3 genes in human triple-negative breast cancer cells

    No full text
    Triple-negative breast cancer (TNBC) is associated with poor prognosis owing to its aggressive and heterogeneous nature, and the lack of therapeutic targets. Although Forkhead Box M1 (FOXM1) is one of the most important oncogenes contributing to tumorigenesis, progression, and drug resistance in TNBC, the underlying molecular mechanisms are not well understood. Emerging evidence indicates that autophagy plays a critical role in cell survival and protective mechanism in TNBC. However, signaling pathways that are involved in the regulation of autophagy remain to be elucidated. In the present study, we examined the role of FOXM1 in regulating autophagy in TNBC cells and found that FOXM1 is upregulated during induction of autophagy. We found that inhibition of FOXM1 suppressed starvation and rapamycin-induced autophagy and expression of the major autophagy regulators, LC3 and Beclin-1. Further studies demonstrated that FOXM1 directly binds to the promotors of LC3 and Beclin-1 genes and transcriptionally regulates their expression by chromatin immunoprecipitation (ChIP) and luciferase gene reporter assays. In conclusion, our study provides the first evidence about the role of FOXM1 in regulating expression of LC3 and Beclin-1 and autophagy in TNBC cells. Our findings provide novel insight into the role of FOXM1 regulation of the autophagic survival pathway and potential molecular target for treating TNBC.Key messages center dot FOXM1 promotes tumorigenesis and progression of TNBC. However, the underlying molecular mechanism by which FOXM1 promotes TNBC tumorigenesis is unclear. The goal of our study was to determine the role of FOXM1 in the regulation of autophagy that plays a role in TNBC progression. Our findings show that FOXM1 binds to promoters of the genes encoding the major autophagy proteins, Beclin and LC3, and provide new insights into the regulation of autophagy, which is being targeted in many clinical trials
    corecore