8 research outputs found

    Integrated Green Chemical Approach to the Medicinal Plant Carpobrotus edulis Processing

    Get PDF
    Associate Laboratory for Green Chemistry (LAQV), which is financed by national funds from FCT/MCTES (UID/QUI/50006/2019).Many plants have medicinal properties due to substances known as phytochemicals. To utilize these plants in practice, numerous procedures, such as extraction, isolation and characterization methods and toxicology and bioactivity studies, must be designed and implemented. Integrated approach to process Carpobrotus edulis, a weed medicinal plant widely spread in Portugal, was developed into a closed loop of two processes: microwave assisted extraction (MAE) and activation (MAA), to produce both phytochemicals and biochar. The use of MAE for phytochemical extraction was shown to be more energy efficient than conventional Soxhlet extraction: the process time was decreased by 7–8 times, and the energy efficiency was increased by up to 97%. The yield of the extracts is of 27%. Qualitative and quantitative identification/characterization of the phytochemicals were performed by LC-MS and phytochemical screening assays. The results clearly indicated that Carpobrotus edulis is rich by flavonoids (up to 24%). The use of MAA to process the residual biomass could shorten the activation time, resulting in reduced energy consumption. Biochar with a high yield of 65% (on a biomass basis) and a well-developed texture (surface area of 68.9 m2/g; total pore volume of 0.10 cm3/g; micropore volume of 0.07 cm3/g) is obtained.publishersversionpublishe

    Recent Advances in Creating Biopreparations to Fight Oil Spills in Soil Ecosystems in Sharply Continental Climate of Republic of Kazakhstan

    No full text
    The problem of eliminating petroleum pollution and its consequences is currently very relevant for Kazakhstan, which is among the ten largest oil-producing countries. The specifics of natural conditions—the sharply continental arid climate—necessitate the development and application of adequate technologies for the restoration of oil-contaminated territories and the Caspian seashore. The key factors (temperature, moisture, alkalinity, salinity, low mineral and organic matter content) affect the self-purification processes and microbiological status of oil-contaminated soils of Kazakhstan. The assessment of taxonomic diversity and characteristics of oil-degrading microorganisms isolated from samples of soils and reservoirs contaminated with hydrocarbons are given. The review of biopreparations and biotechnologies developed and used in Kazakhstan for cleaning environments from oil pollution is made, and their effectiveness is shown. The analysis of the current state of research in the field of biodegradation of hazardous pollutants and bioremediation of oil-contaminated areas allows us to identify promising areas of further work and approaches to the development and improvement of technologies for environmental protection

    Bioremediation of Oil-Contaminated Soil of the Republic of Kazakhstan Using a New Biopreparation

    No full text
    A new biopreparation is developed to clean soils from oil pollution in the arid climate of the Republic of Kazakhstan. The biopreparation includes bacterial strains R. qingshengii F2-1, R. qingshengii F2-2, and P. alloputida BS3701. When using the biopreparation in a liquid mineral medium with 15% crude oil, laboratory studies have revealed degradation of 48% n-alkanes and 39% of PAHs after 50 days. The effectiveness of the biopreparation has been demonstrated in field experiments in the soil contaminated with 10% crude oil at the K-Kurylys landfill, Republic of Kazakhstan. During the six-month field experiment, the number of oil degraders reached 107 CFU/g soil, which degraded 70% of crude oil by the end of the experiment

    The Reactivity of Azidonitrobenzofuroxans towards 1,3-Dicarbonyl Compounds: Unexpected Formation of Amino Derivative via the Regitz Diazo Transfer and Tautomerism Study

    No full text
    Herein, we report on the reaction of nitro-substituted azidobenzofuroxans with 1,3-dicarbonyl compounds in basic media. The known reactions of benzofuroxans and azidofuroxans with 1,3-dicarbonyl compounds in the presence of bases are the 1,3-dipolar cycloaddition and the Beirut reaction. In contrast with this, azidonitrobenzofuroxan reacts with 1,3-carbonyl compounds through Regitz diazo transfer, which is the first example of this type of reaction for furoxan derivatives. This difference is seemingly due to the strong electron-withdrawing effect of the superelectrophilic azidonitrobenzofuroxan, which serves as the azido transfer agent rather than 1,3-dipole in this case

    Water-Soluble Salts Based on Benzofuroxan Derivatives—Synthesis and Biological Activity

    No full text
    A series of novel water-soluble salts of benzofuroxans was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan with various amines. The salts obtained showed good effectiveness of the pre-sowing treatment of seeds of agricultural crops at concentrations of 20–40 mmol. In some cases, the seed treatment with salts leads not only to improved seed germination, but also to the suppression of microflora growth. Additionally, their anti-cancer activityin vitrohas been researched. The compounds with morpholine fragments or a fragment of N-dimethylpropylamine, demonstrated the highest cytotoxic activity, which is in good correlation with the ability to inhibit the glycolysis process in tumor cells. Two compounds 4e and 4g were selected for further experiments using laboratory animals. It was found that the lethal dose of 50% (LD50) is 22.0 ± 1.33 mg/kg for 4e and 13.75 ± 1.73 mg/kg for 4g, i.e., compound 4e is two times less toxic than 4g, according to the mouse model in vivo. It was shown that the studied compounds exhibit antileukemia activity after a single intraperitoneal injection at doses from 1.25 to 5 mg/kg, as a result of which the average lifespan of animals with a P388 murine leukemia tumor increases from 20 to 28%. Thus, the water-soluble salts of benzofuroxans can be considered as promisingcandidates for further development, both as anti-cancer agents and as stimulants for seed germination and regulators of microflora crop growth

    Diverse Biological Activity of Benzofuroxan/Sterically Hindered Phenols Hybrids

    No full text
    Combining two pharmacophores in a molecule can lead to useful synergistic effects. Herein, we show hybrid systems that combine sterically hindered phenols with dinitrobenzofuroxan fragments exhibit a broad range of biological activities. The modular assembly of such phenol/benzofuroxan hybrids allows variations in the phenol/benzofuroxan ratio. Interestingly, the antimicrobial activity only appears when at least two benzofuroxan moieties are introduced per phenol. The most potent of the synthesized compounds exhibit high cytotoxicity against human duodenal adenocarcinoma (HuTu 80), human breast adenocarcinoma (MCF-7), and human cervical carcinoma cell lines. This toxicity is associated with the induction of apoptosis via the internal mitochondrial pathway and an increase in ROS production. Encouragingly, the index of selectivity relative to healthy tissues exceeds that for the reference drugs Doxorubicin and Sorafenib. The biostability of the leading compounds in whole mice blood is sufficiently high for their future quantification in biological matrices

    Synthesis and Anticancer Evaluation of Novel 7-Aza-Coumarine-3-Carboxamides

    No full text
    Herein, we report the design and synthesis of novel 7-aza-coumarine-3-carboxamides via scaffold-hopping strategy and evaluation of their in vitro anticancer activity. Additionally, the improved non-catalytic synthesis of 7-azacoumarin-3-carboxylic acid is reported, which features water as the reaction medium and provides a convenient alternative to the known methods. The anticancer activity of the most potent 7-aza-coumarine-3-carboxamides against the HuTu 80 cell line is equal to that of reference Doxorubicin, while the selectivity towards the normal cell line is 9–14 fold higher

    Hybrids of Sterically Hindered Phenols and Diaryl Ureas: Synthesis, Switch from Antioxidant Activity to ROS Generation and Induction of Apoptosis

    No full text
    The utility of sterically hindered phenols (SHPs) in drug design is based on their chameleonic ability to switch from an antioxidant that can protect healthy tissues to highly cytotoxic species that can target tumor cells. This work explores the biological activity of a family of 45 new hybrid molecules that combine SHPs equipped with an activating phosphonate moiety at the benzylic position with additional urea/thiourea fragments. The target compounds were synthesized by reaction of iso(thio)cyanates with C-arylphosphorylated phenols containing pendant 2,6-diaminopyridine and 1,3-diaminobenzene moieties. The SHP/urea hybrids display cytotoxic activity against a number of tumor lines. Mechanistic studies confirm the paradoxical nature of these substances which combine pronounced antioxidant properties in radical trapping assays with increased reactive oxygen species generation in tumor cells. Moreover, the most cytotoxic compounds inhibited the process of glycolysis in SH-SY5Y cells and caused pronounced dissipation of the mitochondrial membrane of isolated rat liver mitochondria. Molecular docking of the most active compounds identified the activator allosteric center of pyruvate kinase M2 as one of the possible targets. For the most promising compounds, 11b and 17b, this combination of properties results in the ability to induce apoptosis in HuTu 80 cells along the intrinsic mitochondrial pathway. Cyclic voltammetry studies reveal complex redox behavior which can be simplified by addition of a large excess of acid that can protect some of the oxidizable groups by protonations. Interestingly, the re-reduction behavior of the oxidized species shows considerable variations, indicating different degrees of reversibility. Such reversibility (or quasi-reversibility) suggests that the shift of the phenol-quinone equilibrium toward the original phenol at the lower pH may be associated with lower cytotoxicity
    corecore