5 research outputs found

    The role of tin and magnesium in assisting liquid phase sintering of aluminum (Al)

    Get PDF
    This study aims to investigate the effect of tin (Sn) and magnesium (Mg) on the sintering response of sintered Al. Although this topic has been extensively reported, details on the combined effect of Sn and Mg that function as sintering additives are still limited. The current study discusses the effect of the combined use of Sn and Mg to assist aluminium (Al) in liquid phase sintering via the powder metallurgy technique. The results demonstrated that the densities of sintered Al increased from 2.5397 to 2.575 g/cm3 as the Sn content increased from 1.5 to 2.5 wt. % respectively. Accordingly, the physical characteristics of sintered Al were transformed from black to silver, which confirmed the reduction in the oxygen content (oxide layer reduction) from 0.58 to 0.44 wt. % respectively. Additionally, the microstructure of the resultant sintered Al demonstrated that effective wetting by Sn addition was obtained at its maximum content of 2.5 wt. % with a greater micro pores reduction and better metallurgical bonding between Al particles. Therefore, the introduction of different Sn content, along with Mg element, was found to further improve the sintering response of the resultant sintered Al that consequently improved its densities and physical characteristics

    Preliminary development of porous aluminum via powder metallurgy technique

    Get PDF
    Porous aluminum has been extensively studied, particularly in the field in which lightweight and high stiffness properties are essential. In this study, a preliminary investigation is performed to determine the optimum sintering temperature to develop porous aluminium by a powder metallurgy technique, using polymethylmethacrylate as a space holder. The effects of the sintering temperatures on the physical characteristics, oxidation level, microstructure and sintered density of the porous specimen are systematically evaluated. Based on the results, an increase in the sintering temperature from 580 °C to 600 °C changes the colour of the porous aluminum body from a silver‐like colour to a gold‐like colour, with some of the specimens encountering severe cracking, spalling and even collapsing. As such, the oxygen content is significantly increased from 0.45 wt.% to 2.14 wt. %, suggesting the oxidation phenomenon. In line with this, an obvious appearance of particle boundaries with less macro‐pores formation is also observed. Additionally, the sintered density of the porous specimen is found to reduce from 1.305 g/cm3 to 0.908 g/cm3. Therefore, fabrication of the resultant porous aluminium at 580 °C is an ideal condition in this study, owing to the ideal combination of physical characteristics, microstructure, oxidation level and sintered densit

    Effect of growth times on the physical and mechanical properties of hydrophobic and oleophilic silylated bacterial cellulose membranes

    No full text
    Bacterial cellulose is an extracellular natural byproduct of the metabolism of various bacteria. Its physical and mechanical properties were determined by growth period, method of cultivation either static or agitate, fermentation condition and medium. Thispaper presented works done on the effect of culture time on the physical and mechanical properties of silylated bacteria cellulose membranes. Bacterial cellulose (BC) growth under 4, 5, 6 and 7 days had been used as a natural reinforcement material and silane as a hydrophobic coating material. With extended culture time, the tensile strength and tensile modulus were increased linearly as result of more compact structure. Due to hydrophobic properties of silane, the water absorption and thickness swelling improved correspondingly. Contact angle testingusing three different liquid proven the functionality of silane as hydrophobic and oleophilic coating agent. The experimental results suggested that hydropobicand oleophilicsilylatedbacteria cellulose membranes with controlled growth time could be prepared and regarded as a reusable oil spills membrane

    Effect of Cinnamon Extraction Oil (CEO) for Algae Biofilm Shelf-Life Prolongation

    Get PDF
    This study was conducted to improve the life-span of the biofilm produced from algae by evaluating the decomposition rate with the effect of cinnamon extraction oil (CEO). The biofilm was fabricated using the solution casting technique. The soil burying analysis demonstrated low moisture absorption of the biofilm, thus decelerating the degradation due to low swelling rate and micro-organism activity, prolonging the shelf-life of the biofilm. Hence, the addition of CEO also affects the strength properties of the biofilm. The maximum tensile strength was achieved with the addition of 5% CEO, which indicated a good intermolecular interaction between the biopolymer (algae) and cinnamon molecules. The tensile strength, which was measured at 4.80 MPa, correlated with the morphological structure. The latter was performed using SEM, where the surface showed the absence of a separating phase between the biofilm and cinnamon blend. This was evidenced by FTIR analysis, which confirmed the occurrence of no chemical reaction between the biofilm and CEO during processing. The prolongation shelf-life rate of biofilm with good tensile properties are achievable with the addition of 5% of CEO

    Insecticide resistance in dengue vectors from hotspots in Selangor, Malaysia.

    No full text
    BackgroundIn Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance.Method and resultsThe insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species.ConclusionThe present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program
    corecore