55 research outputs found

    A simple characterization of special matchings in lower Bruhat intervals

    Full text link
    We give a simple characterization of special matchings in lower Bruhat intervals (that is, intervals starting from the identity element) of a Coxeter group. As a byproduct, we obtain some results on the action of special matchings.Comment: accepted for publication on Discrete Mathematic

    Unique motifs identify PIG-A proteins from glycosyltransferases of the GT4 family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first step of GPI anchor biosynthesis is catalyzed by PIG-A, an enzyme that transfers <it>N</it>-acetylglucosamine from UDP-<it>N</it>-acetylglucosamine to phosphatidylinositol. This protein is present in all eukaryotic organisms ranging from protozoa to higher mammals, as part of a larger complex of five to six 'accessory' proteins whose individual roles in the glycosyltransferase reaction are as yet unclear. The PIG-A gene has been shown to be an essential gene in various eukaryotes. In humans, mutations in the protein have been associated with paroxysomal noctural hemoglobuinuria. The corresponding PIG-A gene has also been recently identified in the genome of many archaeabacteria although genes of the accessory proteins have not been discovered in them. The present study explores the evolution of PIG-A and the phylogenetic relationship between this protein and other glycosyltransferases.</p> <p>Results</p> <p>In this paper we show that out of the twelve conserved motifs identified by us eleven are exclusively present in PIG-A and, therefore, can be used as markers to identify PIG-A from newly sequenced genomes. Three of these motifs are absent in the primitive eukaryote, <it>G. lamblia</it>. Sequence analyses show that seven of these conserved motifs are present in prokaryote and archaeal counterparts in rudimentary forms and can be used to differentiate PIG-A proteins from glycosyltransferases. Using partial least square regression analysis and data involving presence or absence of motifs in a range of PIG-A and glycosyltransferases we show that (i) PIG-A may have evolved from prokaryotic glycosyltransferases and lipopolysaccharide synthases, members of the GT4 family of glycosyltransferases and (ii) it is possible to uniquely classify PIG-A proteins versus glycosyltransferases.</p> <p>Conclusion</p> <p>Besides identifying unique motifs and showing that PIG-A protein from <it>G. lamblia </it>and some putative PIG-A proteins from archaebacteria are evolutionarily closer to glycosyltransferases, these studies provide a new method for identification and classification of PIG-A proteins.</p

    Three-Dimensional Printed Hydroxyapatite Bone Substitutes Designed by a Novel Periodic Minimal Surface Algorithm Are Highly Osteoconductive

    Full text link
    Autologous bone remains the gold standard bone substitute in clinical practice. Therefore, the microarchitecture of newly developed synthetic bone substitutes, which reflects the spatial distribution of materials in the scaffold, aims to recapitulate the natural bone microarchitecture. However, the natural bone microarchitecture is optimized to obtain a mechanically stable, lightweight structure adapted to the biomechanical loading situation. In the context of synthetic bone substitutes, the application of a Triply Periodic Minimum Surface (TPMS) algorithm can yield stable lightweight microarchitectures that, despite their demanding architectural complexity, can be produced by additive manufacturing. In this study, we applied the TPMS derivative Adaptive Density Minimal Surfaces (ADMS) algorithm to produce scaffolds from hydroxyapatite (HA) using a lithography-based layer-by-layer methodology and compared them with an established highly osteoconductive lattice microarchitecture. We characterized them for compression strength, osteoconductivity, and bone regeneration. The in vivo results, based on a rabbit calvaria defect model, showed that bony ingrowth into ADMS constructs as a measure of osteoconduction depended on minimal constriction as it limited the maximum apparent pore diameter in these scaffolds to 1.53 mm. Osteoconduction decreased significantly at a diameter of 1.76 mm. The most suitable ADMS microarchitecture was as osteoconductive as a highly osteoconductive orthogonal lattice microarchitecture in noncritical- and critical-size calvarial defects. However, the compression strength and microarchitectural integrity in vivo were significantly higher for scaffolds with their microarchitecture based on the ADMS algorithm when compared with high-connectivity lattice microarchitectures. Therefore, bone substitutes with high osteoconductivity can be designed with the advantages of the ADMS-based microarchitectures. As TPMS and ADMS microarchitectures are true lightweight structures optimized for high mechanical stability with a minimal amount of material, such microarchitectures appear most suitable for bone substitutes used in clinical settings to treat bone defects in weight-bearing and non-weight-bearing sites

    Effect of N-Vinyl-2-Pyrrolidone (NVP), a Bromodomain-Binding Small Chemical, on Osteoblast and Osteoclast Differentiation and Its Potential Application for Bone Regeneration

    Full text link
    The human skeleton is a dynamic and remarkably organized organ system that provides mechanical support and performs a variety of additional functions. Bone tissue undergoes constant remodeling; an essential process to adapt architecture/resistance to growth and mechanical needs, but also to repair fractures and micro-damages. Despite bone's ability to heal spontaneously, certain situations require an additional stimulation of bone regeneration, such as non-union fractures or after tumor resection. Among the growth factors used to increase bone regeneration, bone morphogenetic protein-2 (BMP2) is certainly the best described and studied. If clinically used in high quantities, BMP2 is associated with various adverse events, including fibrosis, overshooting bone formation, induction of inflammation and swelling. In previous studies, we have shown that it was possible to reduce BMP2 doses significantly, by increasing the response and sensitivity to it with small molecules called "BMP2 enhancers". In the present study, we investigated the effect of N-Vinyl-2-pyrrolidone (NVP) on osteoblast and osteoclast differentiation in vitro and guided bone regeneration in vivo. We showed that NVP increases BMP2-induced osteoblast differentiation and decreases RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, in a rabbit calvarial defect model, the histomorphometric analysis revealed that bony bridging and bony regenerated area achieved with NVP-loaded poly (lactic-co-glycolic acid (PLGA) membranes were significantly higher compared to unloaded membranes. Taken together, our results suggest that NVP sensitizes BMP2-dependent pathways, enhances BMP2 effect, and inhibits osteoclast differentiation. Thus, NVP could prove useful as "osteopromotive substance" in situations where a high rate of bone regeneration is required, and in the management of bone diseases associated with excessive bone resorption, like osteoporosis

    Geospatial modelling of overlapping habitats for identification of tiger corridor networks in the Terai Arc landscape of India

    No full text
    Wildlife corridors in a landscape include local vegetation, topography, prey base, water and are associated with isolated wildlife habitat patches. They facilitate maintenance of ecological structure and function as well as provide connectivity to faunal populations supporting genetic transfers, and are elements critical to wildlife management. In this work, habitat patches for tiger, both inside as well as outside of Protected Areas have been identified by developing a Habitat Suitability Index model utilizing Remote Sensing and Geographical Information System datasets for the Terai Arc landscape, India. By using a computational approach based on the framework of theory of complex networks, for exclusively pairwise interactions between the habitat patches, a potential tiger corridor network has been structurally identified and studied in this landscape. The interactions between these habitat patches on a spatial scale has been analyzed as a clique of the corridor network. Further, the Clique Percolation Method has been applied to detect overlapping communities of habitat patches in the landscape. The Cliques required for maintaining contiguity between the habitat patches in order to support tiger movement are validated using field observations of tiger communities within the landscape matrix. The model developed for identification of tiger corridors in this study could potentially be of a vital importance for wildlife stakeholders to better understand and manage tiger populations both within and outside of protected areas. The study also highlights Critical Habitat Patches and their importance in maintaining landscape connectivity for tiger dispersal in the landscape. Using a report published by the Government of India as a benchmark, the model presented in the work is found to have an accuracy of 90.73% in predicting tiger carrying patches and the corridor network in the focal landscape

    Frequent alterations of MCPH1 and ATM are associated with primary breast carcinoma: clinical and prognostic implications

    No full text
    Background: MCPH1 is a proximal regulator of DNA damage response pathway that is involved in recruitment of phosphorylated ATM to double-stranded DNA breaks. Methods: To understand the importance of MCPH1 and ATM in deregulation of DNA damage response pathway in breast carcinoma, we studied m-RNA expression and genetic/epigenetic alterations of these genes in primary breast carcinoma samples. Results: Our study revealed reduced expression (mRNA/protein) and high alterations (deletion/methylation) (96 %, 121 of 126) of MCPH1 and ATM. Mutation was, however, rare in inactivation of MCPH1. In immunohistochemical analysis, reduced protein expression of MCPH1, ATM and p-ATM were concordant with their molecular alterations (P = 0.03–0.01). Alterations of MCPH1 and deletion of ATM were significantly high in estrogen/progesterone receptor–negative than estrogen/progesterone receptor–positive breast carcinoma samples compared to early or late age of onset tumors, indicating differences in pathogenesis of the molecular subtypes (P = 0.004–0.01). These genes also showed differential association with tumor stage, grade and lymph node status in different subtypes of breast carcinoma (P = 0.00001–0.01). Their coalterations showed significant association with tumor progression and prognosis (P = 0.003–0.05). Interestingly, patients with alterations of these genes or MCPH1 alone had poor outcome after treatment with DNA-interacting drugs and/or radiation (P = 0.01–0.05). Conclusions: Inactivation of MCPH1-ATM-associated DNA damage response pathway might have an important role in the development of breast carcinoma with diagnostic, prognostic and therapeutic implications

    An automated annotation tool for genomic DNA sequences using GeneScan and BLAST

    No full text
    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated annotation of genome DNA sequences
    • …
    corecore