26 research outputs found

    883 An anti-carcinoma monoclonal antibody (mAb) NEO-201 can also target human acute myeloid leukemia (AML) cell lines in vitro

    Get PDF
    BackgroundNEO-201 is an IgG1 mAb targeting variants of CEACAM5/6 and has demonstrated tumor sensitivity and specificity in epithelial cells. Functional analysis has revealed that NEO-201 can engage innate immune effector mechanisms including ADCC and CDC to directly kill tumor cells expressing its target. A recent Phase 1 clinical trial at the NCI has determined both safety and recommended Phase 2 dosing. We have also seen the expression of the NEO-201 target on hematologic cells, specifically Tregs and neutrophils. Due to epitope being expressed both on malignant epithelial cells as well as several hematologic cells, we designed this study to explore the reactivity of NEO-201 against hematological neoplastic cells in vitro.MethodsPhenotypic analysis was conducted by flow cytometry. Cell lines used were six AML (HL60, U937, MOLM13, AML2, IMS-M2 and OCL-AML3), two multiple myelomas (MM) (OPM2, MM1.S), two acute lymphoblastic leukemia (ALL) (SUP-B15, RPMI8402) and four mantle cell lymphoma (MCL) (Jeko-1, Z138, JVM2 and JVM13). Markers used for flow cytometry analysis were CD15, CD45, CD38, CD138, CD14, CD19 and NEO-201. Functional analysis was performed by evaluating the ability of NEO-201 to mediate ADCC activity against AML cell lines using human NK cells as effector cells.Results5 of 6 AML cell lines tested bind to NEO-201 and the% of positive cells were 47%, 99.5%,100%,100% and 97.8% for HL60, U937, MOLM13, AML3 and IMS-M2, respectively. The% of positive cells in the two MM cell line were 99% and 18% for OPM2 and MM1.S, respectively. NEO-201 binding was not detected in the two ALL and the four MCL cell lines tested. Functional analysis has demonstrated that NEO-201 can mediate ADCC activity against the AML cell line (HL60) tested.ConclusionsThis study demonstrates that NEO-201 mAb's target is expressed in most of the AML cell lines tested in vitro. In addition, we have shown it can mediate ADCC activity against HL60 cells (AML). Together, these findings provide a rationale for further investigation of the role of NEO-201 in AML as well as MM, further exploring patient PBMCs and bone marrow samples

    In-vitro NET-osis induced by COVID-19 sera is associated to severe clinical course in not vaccinated patients and immune-dysregulation in breakthrough infection

    Get PDF
    : Since neutrophil extracellular traps formation (NET-osis) can be assessed indirectly by treating healthy neutrophils with blood-derived fluids from patients and then measuring the NETs response, we designed a pilot study to convey high-dimensional cytometry of peripheral blood immune cells and cytokines, combined with clinical features, to understand if NET-osis assessment could be included in the immune risk profiling to early prediction of clinical patterns, disease severity, and viral clearance at 28 days in COVID-19 patients. Immune cells composition of peripheral blood, cytokines concentration and in-vitro NETosis were detected in peripheral blood of 41 consecutive COVID-19 inpatients, including 21 mild breakthrough infections compared to 20 healthy donors, matched for sex and age. Major immune dysregulation in peripheral blood in not-vaccinated COVID-19 patients compared to healthy subjects included: a significant reduction of percentage of unswitched memory B-cells and transitional B-cells; loss of naĂŻve CD3+CD4+CD45RA+ and CD3+CD8+CD45RA+ cells, increase of IL-1β, IL-17A and IFN-Îł. Myeloid compartment was affected as well, due to the increase of classical (CD14++CD16-) and intermediate (CD14++CD16+) monocytes, overexpressing the activation marker CD64, negatively associated to the absolute counts of CD8+ CD45R0+ cells, IFN-Îł and IL-6, and expansion of monocytic-like myeloid derived suppressor cells. In not-vaccinated patients who achieved viral clearance by 28 days we found at hospital admission lower absolute counts of effector cells, namely CD8+T cells, CD4+ T-cells and CD4+CD45RO+ T cells. Percentage of in-vitro NET-osis induced by patients' sera and NET-osis density were progressively higher in moderate and severe COVID-19 patients than in mild disease and controls. The percentage of in-vitro induced NET-osis was positively associated to circulating cytokines IL-1β, IFN-Îł and IL-6. In breakthrough COVID-19 infections, characterized by mild clinical course, we observed increased percentage of in-vitro NET-osis, higher CD4+ CD45RO+ and CD8+ CD45RO+ T cells healthy or mild-COVID-19 not-vaccinated patients, reduced by 24 h of treatment with ACE inhibitor ramipril. Taken together our data highlight the role of NETs in orchestrating the complex immune response to SARS-COV-2, that should be considered in a multi-target approach for COVID-19 treatment

    Potential clinical impact of T-cell lymphocyte kinetics monitoring in patients with B cell precursors acute lymphoblastic leukemia treated with blinatumomab: a single-center experience

    Get PDF
    Blinatumomab is a bispecific anti-CD3 and anti-CD19 antibody that acts as a T-cell engager: by binding CD19+ lymphoblasts, blinatumomab recruits cytotoxic CD3+ T-lymphocytes to target the cancer cells. Here we describe seven different patients affected by B-cell precursor acute lymphoblastic leukemia (Bcp-ALL) and treated with blinatumomab, on which we evaluated the potential association between the amount of different T-cells subsets and deep molecular response after the first cycle, identified as a complete remission in the absence of minimal residual disease (CR/MRD). The immune-system effector cells studied were CD3+, CD4+ effector memory (T4-EM), CD8+ effector memory (T8-EM), and T-regulatory (T-reg) lymphocytes, and myeloid-derived suppressor cells (MDSC). Measurements were performed in the peripheral blood using flow cytometry of the peripheral blood at baseline and after the first cycle of blinatumomab. The first results show that patients with a higher proportion of baseline T-lymphocytes achieved MRD negativity more frequently with no statistically significant difference (p=0.06) and without differences in the subpopulation count following the first treatment. These extremely preliminary data could potentially pave the way for future studies, including larger and less heterogeneous cohorts, in order to assess the T-cell kinetics in a specific set of patients with potential synergy effects in targeting myeloid-derived suppressor cells (MDSC), commonly known to have an immune evasion mechanism in Bcp-ALL

    Chk1 Inhibition Restores Inotuzumab Ozogamicin Citotoxicity in CD22-Positive Cells Expressing Mutant p53

    Get PDF
    Inotuzumab ozogamicin (IO) is an anti-CD22 calicheamicin immunoconjugate that has been recently approved for the treatment of relapsed or refractory B-Acute Lymphoblastic Leukemia (r/r B-ALL). We employed both immortalized and primary cells derived from CD22-positive lymphoproliferative disorders to investigate the signaling pathways contributing to IO sensitivity or resistance. We found that the drug reduced the proliferation rate of CD22-positive cell lines expressing wild-type p53, but was remarkably less effective on cells exhibiting mutant p53. In addition, CD22-positive cells surviving IO were mostly blocked in the G2/M phase of the cell cycle because of Chk1 activation that, in the presence of a wild-type p53 background, led to p21 induction. When we combined IO with the Chk1 inhibitor UCN-01, we successfully abrogated IO-induced G2/M arrest regardless of the underlying p53 status, indicating that the DNA damage response triggered by IO is also modulated by p53-independent mechanisms. To establish a predictive value for p53 in determining IO responsiveness, we expressed mutant p53 in cell lines displaying the wild-type gene and observed an increase in IO IC50 values. Likewise, overexpression of an inducible wild-type p53 in cells natively presenting a mutant protein decreased their IC50 for IO. These results were also confirmed in primary CD22-positive cells derived from B-ALL patients at diagnosis and from patients with r/r B-ALL. Furthermore, co-treatment with IO and UCN-01 significantly increased cell death in primary cells expressing mutant p53. In summary, our findings suggest that p53 status may represent a biomarker predictive of IO efficacy in patients diagnosed with CD22-positive malignancies

    Insulin Receptor Isoforms Differently Regulate Cell Proliferation and Apoptosis in the Ligand-Occupied and Unoccupied State

    No full text
    The insulin receptor (IR) presents two isoforms (IR-A and IR-B) that differ for the α-subunit C-terminal. Both isoforms are expressed in all human cells albeit in different proportions, yet their functional properties-when bound or unbound to insulin-are not well characterized. From a cell model deprived of the Insulin-like Growth Factor 1 Receptor (IGF1-R) we therefore generated cells exhibiting no IR (R-shIR cells), or only human IR-A (R-shIR-A), or exclusively human IR-B (R-shIR-B) and we studied the specific effect of the two isoforms on cell proliferation and cell apoptosis. In the absence of insulin both IR-A and IR-B similarly inhibited proliferation but IR-B was 2–3 fold more effective than IR-A in reducing resistance to etoposide-induced DNA damage. In the presence of insulin, IR-A and IR-B promoted proliferation with the former significantly more effective than the latter at increasing insulin concentrations. Moreover, only insulin-bound IR-A, but not IR-B, protected cells from etoposide-induced cytotoxicity. In conclusion, IR isoforms have different effects on cell proliferation and survival. When unoccupied, IR-A, which is predominantly expressed in undifferentiated and neoplastic cells, is less effective than IR-B in protecting cells from DNA damage. In the presence of insulin, particularly when present at high levels, IR-A provides a selective growth advantage

    Potential Role of Activating Transcription Factor 5 during Osteogenesis

    No full text
    Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology

    Immunological Dysregulation in Multiple Myeloma Microenvironment

    No full text
    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target

    Immunological Dysregulation in Multiple Myeloma Microenvironment

    No full text
    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo-and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target
    corecore