3,783 research outputs found

    Swift observations of the 2015 outburst of AG Peg -- from slow nova to classical symbiotic outburst

    Get PDF
    Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its second optical outburst since 1850. This recent outburst was of much shorter duration and lower amplitude than the earlier eruption, and it contained multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We report Swift X-ray and UV observations of AG Peg made between June 2015 and January 2016. The X-ray flux was markedly variable on a time scale of days, particularly during four days near optical maximum, when the X-rays became bright and soft. This strong X-ray variability continued for another month, after which the X-rays hardened as the optical flux declined. The UV flux was high throughout the outburst, consistent with quasi-steady shell burning on the white dwarf. Given that accretion disks around white dwarfs with shell burning do not generally produce detectable X-rays (due to Compton-cooling of the boundary layer), the X-rays probably originated via shocks in the ejecta. As the X-ray photo-electric absorption did not vary significantly, the X-ray variability may directly link to the properties of the shocked material. AG Peg's transition from a slow symbiotic nova (which drove the 1850 outburst) to a classical symbiotic star suggests that shell burning in at least some symbiotic stars is residual burning from prior novae.Comment: Accepted by MNRAS 23 June 2016. Manuscript submitted in original form 5 April 201

    Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density EEG

    Full text link
    We demonstrate an application of spherical harmonic decomposition to analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to analysis of hemispherical, irregularly sampled data. Performance of the methods and spatial sampling requirements are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wavenumber relationship in some bands.Comment: 12 pages, 8 figures, submitted to Phys. Rev. E, uses APS RevTeX style

    The Reproductive Biology of Two Common Surfzone Associated Sciaenids, Yellowfin Croaker (Umbrina roncador) and Spotfin Croaker (Roncador stearnsii), from Southern California

    Get PDF
    Yellowfin croaker (Umbrina roncador) and spotfin croaker (Roncador stearnsii) were collected from San Clemente, California from May through September 2006. Both species were analyzed to determine batch fecundity. Yellowfin croaker ovaries were also histologically examined to describe their summer spawning activity. Batch fecundity in spotfin croaker (n 5 13) females ranged from 35,169 to 640,703 described by the equations BF 5 1.59E-07SL5.01 for length and BF 5 13.51W1.60 for total body weight. Yellowfin croaker (n 5 16) females batch fecundity ranged from 99,259 to 405,967 and was described by the equations BF 5 2.4E- 04SL2.02 for length or BF 5 0.33W0.68 for total body weight. Yellowfin croaker spawning was determined to begin by June and end by September

    Magnon Polarons induced by a magnetic field gradient

    Full text link
    In this work, we report the theoretical possibility of generating magnon polaron excitations through a space-varying magnetic field. The spatial dependence of the magnetic field in the Zeeman interaction gives rise to a magnon-phonon coupling when a magnetic field gradient is applied, and such a coupling depends directly on the strength of the gradient. It is also predicted that the direction of the magnetic field gradient allows control over which phonon polarization couples to the magnons in the material. Here we develop the calculations of the magnon-phonon coupling for an arbitrary (anti)ferromagnet, which are later used to numerically study its consequences. These results are compared to the ones obtained with the phenomenological magnetoelastic coupling in YIG, where we show that the magnon polaron bandgap seen in YIG can be also obtained with a magnetic field gradient of 0.1\sim 0.1T/m which can be achieved with the current experimental techniques. Our results propose a new way of controlling the magnetoelastic coupling in an arbitrary material and open a new route to exploit the magnon-phonon interaction in magnonic and spintronic devices

    Extended Recurrence Plot Analysis and its Application to ERP Data

    Get PDF
    We present new measures of complexity and their application to event related potential data. The new measures base on structures of recurrence plots and makes the identification of chaos-chaos transitions possible. The application of these measures to data from single-trials of the Oddball experiment can identify laminar states therein. This offers a new way of analyzing event-related activity on a single-trial basis.Comment: 21 pages, 8 figures; article for the workshop ''Analyzing and Modelling Event-Related Brain Potentials: Cognitive and Neural Approaches`` at November 29 - December 01, 2001 in Potsdam, German

    One dimensional Coulomb-like problem in deformed space with minimal length

    Full text link
    Spectrum and eigenfunctions in the momentum representation for 1D Coulomb potential with deformed Heisenberg algebra leading to minimal length are found exactly. It is shown that correction due to the deformation is proportional to square root of the deformation parameter. We obtain the same spectrum using Bohr-Sommerfeld quantization condition.Comment: 11 pages, typos corrected, references adde

    Discovering a junction tree behind a Markov network by a greedy algorithm

    Full text link
    In an earlier paper we introduced a special kind of k-width junction tree, called k-th order t-cherry junction tree in order to approximate a joint probability distribution. The approximation is the best if the Kullback-Leibler divergence between the true joint probability distribution and the approximating one is minimal. Finding the best approximating k-width junction tree is NP-complete if k>2. In our earlier paper we also proved that the best approximating k-width junction tree can be embedded into a k-th order t-cherry junction tree. We introduce a greedy algorithm resulting very good approximations in reasonable computing time. In this paper we prove that if the Markov network underlying fullfills some requirements then our greedy algorithm is able to find the true probability distribution or its best approximation in the family of the k-th order t-cherry tree probability distributions. Our algorithm uses just the k-th order marginal probability distributions as input. We compare the results of the greedy algorithm proposed in this paper with the greedy algorithm proposed by Malvestuto in 1991.Comment: The paper was presented at VOCAL 2010 in Veszprem, Hungar

    Learned Garbage Collection

    Get PDF
    Several programming languages use garbage collectors (GCs) to automatically manage memory for the programmer. Such collectors must decide when to look for unreachable objects to free, which can have a large performance impact on some applications. In this preliminary work, we propose a design for a learned garbage collector that autonomously learns over time when to perform collections. By using reinforcement learning, our design can incorporate user-defined reward functions, allowing an autonomous garbage collector to learn to optimize the exact metric the user desires (e.g., request latency or queries per second). We conduct an initial experimental study on a prototype, demonstrating that an approach based on tabular Q learning may be promising

    AdS5AdS_{5} black hole at N=2 supergravity

    Full text link
    In this paper, we consider the charged non-extremal black hole at five dimensional N = 2 supergravity. We study thermodynamics of AdS_{5} black hole with three equal charges (q_{1} = q_{2} = q_{3} = q). We obtain Schrodinger like equation and discuss the effective potential. Then, we consider the case of the perturbed dilaton field background and find presence of odd coefficients of the wave function. Also we find that the higher derivative corrections have no effect on the first and second even coefficients of the wave function.Comment: 17 pages, 4 figures. Published versio
    corecore