13,970 research outputs found

    Microfissuring of Inconel 718

    Get PDF
    A tentative mathematical computer model of the microfissuring process during electron beam welding of Inconel 718 has been constructed. Predictions of the model are compatible with microfissuring tests on eight 0.25-in. thick test plates. The model takes into account weld power and speed, weld loss (efficiency), parameters and material characteristics. Besides the usual material characteristics (thermal and strength properties), a temperature and grain size dependent critical fracture strain is required by the model. The model is based upon fundamental physical theory (i.e., it is not a mere data interpolation system), and can be extended to other metals by suitable parameter changes

    A comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)

    Get PDF
    The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included

    The effects of multiple repairs on Inconel 718 weld mechanical properties

    Get PDF
    Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively tested. Tensile properties and high cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high cycle fatigue properties. Statistical analysis performed on the data did not show a significant decrease in tensile or high cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties, however, it was minimal

    Synthesis and properties of Co-doped titanate nanotubes and their optical sensitization with methylene blue

    Get PDF
    Here we report on a novel chemical route to synthesize homogenous cobalt doped titanate nanotubes (CoTNT), using an amorphous Co-doped precursor. The influence of the synthesis temperature, autoclave dwell time and metal doping on the structural and microstructural as well as on the optical properties of the synthesized titanate nanotubes is studied and discussed. The optical band gaps of the CoTNT samples are red shifted in comparison with the values determined for the undoped samples, such red shifts bringing the absorption edge of the CoTNT samples into the visible region. CoTNT materials also demonstrate particular high adsorption ability for methylene blue, the amount of the adsorbed dye being higher than the one predictable for a monolayer formation. This suggests the possibility of intercalation of the dye molecule between the TiO6 layers of the TNT structure. It is also shown that the methylene blue sensitized Co-doped nanostructures are highly stable under UV radiation and present a strong and broad absorption in the visible region.Comment: 31 pages, 3 tables, 7 figure

    Understanding low energy reaction with exotic nuclei

    Full text link
    Recent developments on the understanding of low energy reactions are highlighted. Emphasis is given to the CDCC framework where the breakup channels of the projectile are included explicitly. Properties of the breakup couplings are presented. Comments are given with regard to the separation between the nuclear and the Coulomb contributions to breakup cross sections as well as the dependence on the optical potentials. A discussion on the sensitivity of the CDCC basis is discussed, by comparing pure breakup results with transfer to the continuum calculations. Finally, some remaining controversies show the need to go beyond the single particle picture for the projectile.Comment: Proceedings from 'Nuclei at the limits', ANL 26-30 July 2004, 6 pages and 8 figure
    corecore