9 research outputs found

    Hemolysis Is Associated with Low Reticulocyte Production Index and Predicts Blood Transfusion in Severe Malarial Anemia

    Get PDF
    Background: Falciparum Malaria, an infectious disease caused by the apicomplexan parasite Plasmodium falciparum, is among the leading causes of death and morbidity attributable to infectious diseases worldwide. In Gabon, Central Africa, one out of four inpatients have severe malarial anemia (SMA), a life-threatening complication if left untreated. Emerging drug resistant parasites might aggravate the situation. This case control study investigates biomarkers of enhanced hemolysis in hospitalized children with either SMA or mild malaria (MM). Methods and Findings: Ninety-one children were included, thereof 39 SMA patients. Strict inclusion criteria were chosen to exclude other causes of anemia. At diagnosis, erythrophagocytosis (a direct marker for extravascular hemolysis, EVH) was enhanced in SMA compared to MM patients (5.0 arbitrary units (AU) (interquartile range (IR): 2.2–9.6) vs. 2.1 AU (IR: 1.3–3.9), p<0.01). Furthermore, indirect markers for EVH, (i.e. serum neopterin levels, spleen size enlargement and monocyte pigment) were significantly increased in SMA patients. Markers for erythrocyte ageing, such as CD35 (complement receptor 1), CD55 (decay acceleration factor) and phosphatidylserine exposure (annexin-V-binding) were investigated by flow cytometry. In SMA patients, levels of CD35 and CD55 on the red blood cell surface were decreased and erythrocyte removal markers were increased when compared to MM or reconvalescent patients. Additionally, intravascular hemolysis (IVH) was quantified using several indirect markers (LDH, alpha-HBDH, haptoglobin and hemopexin), which all showed elevated IVH in SMA. The presence of both IVH and EVH predicted the need for blood transfusion during antimalarial treatment (odds ratio 61.5, 95% confidence interval (CI): 8.9–427). Interestingly, this subpopulation is characterized by a significantly lowered reticulocyte production index (RPI, p<0.05). Conclusions: Our results show the multifactorial pathophysiology of SMA, whereby EVH and IVH play a particularly important role. We propose a model where removal of infected and non-infected erythrocytes of all ages (including reticulocytes) by EVH and IVH is a main mechanism of SMA. Further studies are underway to investigate the mechanism and extent of reticulocyte removal to identify possible interventions to reduce the risk of SMA development

    Effects of malaria heme products on red blood cell deformability.

    No full text
    In falciparum malaria, the deformability of the entire erythrocyte population is reduced in proportion to disease severity, and this compromises microcirculatory blood flow through vessels partially obstructed by cytoadherent parasitized erythrocytes. The cause of rigidity of uninfected erythrocytes in not known but could be mediated by malaria heme products. In this study, we show that red blood cell deformability (RBC-D), measured by laser-assisted optical rotational cell analyzer, decreased in a dose-dependent manner after incubation with hemin and hydrogen peroxide but not with hemoglobin or beta-hematin. Hemin also reduced mean red cell volume. Albumin decreased and N-acetylcysteine (NAC) both prevented and reversed rigidity induced by hemin. Hemin-induced oxidative damage of the membrane seems to be a more important contributor to pathology than cell shrinkage because the antioxidant NAC restored RBC-D but not red blood cell volume. The findings suggest novel approaches to the treatment of potentially lethal malaria

    Severe malaria is associated with a deficiency of von Willebrand factor cleaving protease, ADAMTS13.

    No full text
    Severe falciparum malaria remains a major killer in tropical countries. Central in the pathophysiology is mechanical obstruction in the microcirculation caused by cytoadherence and sequestration of parasitized erythrocytes. However, the pathogenesis of many features complicating severe malaria, including coma, renal failure and thrombocytopenia, remains incompletely understood. These disease manifestations are also key features of thrombotic thrombocytopenic purpura, a life-threatening disease strongly associated with a deficiency of the von Willebrand factor (VWF) cleaving protease, ADAMTS13. We measured plasma ADAMTS13 activity, VWF antigen and VWF propeptide levels in 30 patients with severe falciparum malaria, 12 patients with uncomplicated falciparum malaria and 14 healthy Bangladeshi controls. In patients with severe malaria ADAMTS13 activity levels were markedly decreased in comparison to normal controls (mean [95%CI]: 23% [20-26] vs. 64% [55-72]) and VWF antigen and propeptide concentrations were significantly elevated (VWF antigen: 439% [396-481] vs. 64% [46-83]; VWF propeptide: 576% [481-671] vs. 69% [59-78]). In uncomplicated malaria VWF levels were also increased compared to healthy controls but ADAMTS13 activity was normal. The results suggest that decreased ADAMTS13 activity in combination with increased VWF concentrations may contribute to the complications in severe malaria
    corecore