7 research outputs found

    Room-Temperature H2 Gas Sensing Characterization of Graphene-Doped Porous Silicon via a Facile Solution Dropping Method

    No full text
    In this study, a graphene-doped porous silicon (G-doped/p-Si) substrate for low ppm H2 gas detection by an inexpensive synthesis route was proposed as a potential noble graphene-based gas sensor material, and to understand the sensing mechanism. The G-doped/p-Si gas sensor was synthesized by a simple capillary force-assisted solution dropping method on p-Si substrates, whose porosity was generated through an electrochemical etching process. G-doped/p-Si was fabricated with various graphene concentrations and exploited as a H2 sensor that was operated at room temperature. The sensing mechanism of the sensor with/without graphene decoration on p-Si was proposed to elucidate the synergetic gas sensing effect that is generated from the interface between the graphene and p-type silicon

    Control of Nd-Fe-B Morphology as Function of the PVP Concentration Using Electrospinning Process

    No full text
    In this study, we demonstrate a facile and cost-effective way to synthesize Nd-Fe-B of various shapes such as powders, rods and fibers using electrospinning, heat-treatment and washing procedures. Initially Nd-Fe-B fibers were fabricated using electrospinning. The as-spun Nd-Fe-B fibers had diameters ranging 489 to 630 nm depending on the PVP concentration in reaction solutions. The different morphologies of the Nd2Fe14B magnetic materials were related to the difference in thickness of the as-spun fibers. The relationships between the as-spun fiber thickness, the final morphology, and magnetic properties were briefly elucidated. The intrinsic coercivity of Nd2Fe14B changed with the change in morphology from powder (3908 Oe) to fiber (4622 Oe). This work demonstrates the effect of the Nd-Fe-B magnetic properties with morphology and can be extended to the experimental design of other magnetic materials
    corecore