4 research outputs found

    The Economic Benefits Resulting from the First 8 Years of the Global Programme to Eliminate Lymphatic Filariasis (2000–2007)

    Get PDF
    Lymphatic filariasis (LF), commonly known as ‘elephantiasis’, is one of the world's most debilitating infectious diseases. In 83 countries worldwide, more than 1.3 billion people are at risk of infection with an estimated 120 million individuals already infected. A recent publication reviewing the health impact of the first 8 years of the Global Programme to Eliminate Lymphatic Filariasis (GPELF) demonstrated the enormous health benefits achieved in populations receiving annual mass drug administration (MDA), as a result of infection prevented, disease progression halted, and ancillary treatment of co-infections. To date, however, no studies have estimated the economic value of these health benefits, either to the individuals or the societies afflicted with LF. Our study estimates that US21.8billionwillbegainedamongindividualsbenefittingfromjustthefirst8yearsoftheGlobalProgramme,andanadditionalUS21.8 billion will be gained among individuals benefitting from just the first 8 years of the Global Programme, and an additional US2.2 billion will be saved by the health systems of endemic countries. Treating endemic populations is possible at very low cost – particularly because of the generous drug donations from two pharmaceutical companies – but results in enormous economic benefits. Findings from this study yield a much clearer understanding the GPELF's full economic impact and strengthen the conviction that it is a ‘best buy’ in global health

    Revival of the Magnetar PSR J1622–4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    © 2018. The American Astronomical Society.. New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100 larger than during its dormant state. The X-ray flux one month after reactivation was at least 800 larger than during quiescence, and has been decaying exponentially on a 111 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation
    corecore