10 research outputs found

    Clinical trial on the efficacy and safety of NPC-15 for patients with xeroderma pigmentosum exaggerated sunburn reaction type: XP-1 study protocol for a multicentre, double-blinded, placebo-controlled, two-group crossover study followed by a long-term open study in Japan

    No full text
    Introduction Xeroderma pigmentosum (XP) is a rare intractable disease without a fundamental treatment, presenting with severe photosensitivity, freckle-like pigmented and depigmented maculae and numerous skin cancers before the age of 10 years without strict sun protection. About 70% of the patients exhibit extremely severe sunburn reactions and most of them develop neurological symptoms, including sensorineural hearing impairment and progressive peripheral and central nervous disorders beginning from childhood ages. In the preclinical study, we found that N-acetyl-5-methoxytryptamine was effective in suppressing skin tumour development in addition to improvement of auditory brainstem response in chronically ultraviolet-irradiated XP-A model mice.Methods and analysis On the bases of the preclinical study, we conduct a clinical trial on the efficacy of NPC-15 for patients with XP with exaggerated sunburn reaction type by a multicentre, double-blinded placebo-controlled, two-group crossover study followed by a 52 weeks open study.Ethics and dissemination Ethics approval is overseen by the Kobe University Institutional Review Board and Osaka Medical and Pharmaceutical University Institutional Review Board, and the study is conducted in accordance with the approved protocol. All participants will be required to provide written informed consent. Findings will be disseminated through scientific and professional conferences and peer-reviewed journal publications. The data sets generated during the study will be available from the corresponding author on reasonable request.Trial registration number jRCTs051210181

    Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans

    Get PDF
    Introduction Surgical site infection is one of the most severe complications of surgical treatments. However, the optimal procedure to prevent such infections remains uninvestigated. Ultraviolet radiation C (UVC) with a short wavelength has a high bactericidal effect; however, it is cytotoxic. Nonetheless, given that UVC with a wavelength of 222 nm reaches only the stratum corneum, it does not affect the skin cells. This study aimed to investigate the safety of 222-nm UVC irradiation and to examine its skin sterilization effect in healthy volunteers. Methods This trial was conducted on 20 healthy volunteers. The back of the subject was irradiated with 222-nm UVC at 50–500 mJ/cm(2), and the induced erythema (redness of skin) was evaluated. Subsequently, the back was irradiated with a maximum amount of UVC not causing erythema, and the skin swabs before and after the irradiation were cultured. The number of colonies formed after 24 hours was measured. In addition, cyclobutene pyrimidine dimer (CPD) as an indicator of DNA damage was measured using skin tissues of the nonirradiated and irradiated regions. Results All subjects experienced no erythema at all doses. The back of the subject was irradiated at 500 mJ/cm(2), and the number of bacterial colonies in the skin swab culture was significantly decreased by 222-nm UVC irradiation. The CPD amount produced in the irradiated region was slightly but significantly higher than that of the non-irradiated region. Conclusion A 222-nm UVC at 500 mJ/cm(2) was a safe irradiation dose and possessed bactericidal effects. In the future, 222-nm UVC irradiation is expected to contribute to the prevention of perioperative infection

    Assessing the safety of new germicidal far-UVC technologies

    No full text
    The COVID-19 pandemic underscored the crucial importance of enhanced indoor air quality control measures to mitigate the spread of respiratory pathogens. Far-UVC is a type of germicidal ultraviolet technology, with wavelengths between 200 and 235 nm, that has emerged as a highly promising approach for indoor air disinfection. Due to its enhanced safety compared to conventional 254 nm upper-room germicidal systems, far-UVC allows for whole-room direct exposure of occupied spaces, potentially offering greater efficacy, since the total room air is constantly treated. While current evidence supports using far-UVC systems within existing guidelines, understanding the upper safety limit is critical to maximizing its effectiveness, particularly for the acute phase of a pandemic or epidemic when greater protection may be needed. This review article summarizes the substantial present knowledge on far-UVC safety regarding skin and eye exposure and highlights research priorities to discern the maximum exposure levels that avoid adverse effects. We advocate for comprehensive safety studies that explore potential mechanisms of harm, generate action spectra for crucial biological effects and conduct high-dose, long-term exposure trials. Such rigorous scientific investigation will be key to determining safe and effective levels for far-UVC deployment in indoor environments, contributing significantly to future pandemic preparedness and response.</p
    corecore