48 research outputs found

    Transport through a quantum dot with SU(4) Kondo entanglement

    Full text link
    We investigate a mesoscopic setup composed of a small electron droplet (dot) coupled to a larger quantum dot (grain) also subject to Coulomb blockade as well as two macroscopic leads used as source and drain. An exotic Kondo ground state other than the standard SU(2) Fermi liquid unambiguously emerges: an SU(4) Kondo correlated liquid. The transport properties through the small dot are analyzed for this regime, through boundary conformal field theory, and allow a clear distinction with other regimes such as a two-channel spin state or a two-channel orbital state.Comment: 13 pages, 3 figure

    Elementary excitations in homogeneous superfluid neutron star matter: Role of the proton component

    Full text link
    The thermal evolution of neuron stars depends on the elementary excitations affecting the stellar matter. In particular, the low-energy excitations, whose energy is proportional to the transfered momentum, can play a major role in the emission and propagation of neutrinos. In this paper, we focus on the density modes associated with the proton component in the homogeneous matter of the outer core of neutron stars (at density between one and three times the nuclear saturation density, where the baryonic constituants are expected to be neutrons and protons). In this region, it is predicted that the protons are superconductor. We study the respective roles of the proton pairing and Coulomb interaction in determining the properties of the modes associated with the proton component. This study is performed in the framework of the Random Phase Approximation, generalized in order to describe the response of a superfluid system.The formalism we use ensures that the Generalized Ward's Identities are satisfied. An important conclusion of this work is the presence of a pseudo-Goldstone mode associated with the proton superconductor in neutron-star matter. Indeed, the Goldstone mode, which characterizes a pure superfluid, is suppressed in usual superconductors due to the long-range Coulomb interaction, which only allows a plasmon mode. However, for the proton component of stellar matter, the Coulomb field is screened by the electrons and a pseudo-Goldstone mode occurs, with a velocity increased by the Coulomb interaction.Comment: Submitted for publicatio

    Conductance of a spin-1 quantum dot: the two-stage Kondo effect

    Full text link
    We discuss the physics of a of a spin-1 quantum dot, coupled to two metallic leads and develop a simple model for the temperature dependence of its conductance. Such quantum dots are described by a two-channel Kondo model with asymmetric coupling constants and the spin screening of the dot by the leads is expected to proceed via a two-stage process. When the Kondo temperatures of each channel are widely separated, on cooling, the dot passes through a broad cross-over regime dominated by underscreened Kondo physics. A singular, or non-fermi liquid correction to the conductance develops in this regime. At the lowest temperatures, destructive interference between resonant scattering in both channels leads to the eventual suppression of the conductance of the dot. We develop a model to describe the growth, and ultimate suppression of the conductance in the two channel Kondo model as it is screened successively by its two channels. Our model is based upon large-N approximation in which the localized spin degrees of freedom are described using the Schwinger boson formalism.Comment: 16 pages, 10 figure

    Dynamic response of 1D bosons in a trap

    Full text link
    We calculate the dynamic structure factor S(q,omega) of a one-dimensional (1D) interacting Bose gas confined in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the 1D motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential. In the compressible state, we find that the smooth variation of the gas density around the trap center leads to softening of the singular behavior of S(q,omega) at Lieb-1 mode compared to the behavior predicted for homogeneous 1D systems. Nevertheless, the density-averaged response remains a non-analytic function of q and omega at Lieb-1 mode in the limit of weak trap confinement. The exponent of the power-law non-analyticity is modified due to the inhomogeneity in a universal way, and thus, bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice causes formation of Mott phases. Deep in the Mott regime, we predict a semi-circular peak in S(q,\omega) centered at the on-site repulsion energy, omega=U. Similar peaks of smaller amplitudes exist at multiples of U as well. We explain the suppression of the dynamic response with entering into the Mott regime, observed recently by D. Clement et al., Phys. Rev. Lett. v. 102, p. 155301 (2009), based on an f-sum rule for the Bose-Hubbard model.Comment: 24 pages, 11 figure

    The electronic structure of the heavy fermion metal LiV2O4LiV_2O_4

    Full text link
    The electronic structure of the first reported heavy fermion compound without f-electrons LiV_2O_4 was studied by an ab-initio calculation method. In the result of the trigonal splitting and d-d Coulomb interaction one electron of the d1.5d^{1.5} configuration of V ion is localized and the rest partially fills a relatively broad conduction band. The effective Anderson impurity model was solved by Non-Crossing-Approximation method, leading to an estimation for the single-site Kondo energy scale T_K. Then, we show how the so-called exhaustion phenomenon of Nozi\`eres for the Kondo lattice leads to a remarkable decrease of the heavy-fermion (or coherence) energy scale TcohTK2/DT_{coh}\equiv {T_K}^2/D (D is the typical bandwidth), comparable to the experimental result.Comment: 4 pages, RevTeX; 3 figures in format .eps. submitted to PR

    Anderson-Yuval approach to the multichannel Kondo problem

    Full text link
    We analyze the structure of the perturbation expansion of the general multichannel Kondo model with channel anisotropic exchange couplings and in the presence of an external magnetic field, generalizing to this case the Anderson-Yuval technique. For two channels, we are able to map the Kondo model onto a generalized resonant level model. Limiting cases in which the equivalent resonant level model is solvable are identified. The solution correctly captures the properties of the two channel Kondo model, and also allows an analytic description of the cross-over from the non Fermi liquid to the Fermi liquid behavior caused by the channel anisotropy.Comment: 23 pages, ReVTeX, 4 figures av. on reques

    Kondo effect in a Luttinger liquid: nonuniversality of the Wilson ratio

    Full text link
    Using a precise coset Ising-Bose representation, we show how backscattering of electrons off a magnetic impurity destabilizes the two-channel Kondo fixed point and drives the system to a new fixed point, in agreement with previous results. In addition, we verify the scaling proposed by Furusaki and Nagaosa and prove that the other possible critical fixed point, namely the local Fermi liquid class, is not completely universal when backscattering is included because the Wilson ratio is not well-defined in the spinon basis.Comment: 4 pages, RevTeX; to appear in Physical Review

    Superconductivity with hard-core repulsion: BCS-Bose crossover and s-/d-wave competition

    Full text link
    We consider fermions on a 2D lattice interacting repulsively on the same site and attractively on the nearest neighbor sites. The model is relevant, for instance, to study the competition between antiferromagnetism and superconductivity in a Kondo lattice. We first solve the two-body problem to show that in the dilute and strong coupling limit the s-wave Bose condensed state is always the ground state. We then consider the many-body problem and treat it at mean-field level by solving exactly the usual gap equation. This guarantees that the superconducting wave-function correctly vanishes when the two fermions (with antiparallel spin) sit on the same site. This fact has important consequences on the superconducting state that are somewhat unusual. In particular this implies a radial node-line for the gap function. When a next neighbor hopping t' is present we find that the s-wave state may develop nodes on the Fermi surface.Comment: 10 pages, 9 fig

    Second order quantum phase transition of a homogeneous Bose gas with attractive interactions

    Full text link
    We consider a homogeneous Bose gas of particles with an attractive interaction. Mean field theory predicts for this system a spontaneous symmetry breaking at a certain value of the interaction strength. We show that at this point a second-order quantum phase transition occurs. We investigate the system in the vicinity of the critical point using Bogoliubov theory and a continuous description, that allows us to analyze {\it quantum fluctuations} in the system even when the Bogoliubov approach breaks down.Comment: 7 pages, 3 figure
    corecore