6,300 research outputs found
Stochastic Resonance: influence of a noise spectrum
Here, in order to study \textit{stochastic resonance} (SR) in a double-well
potential when the noise source has a spectral density of the form
with varying , we have extended a procedure, introduced
by Kaulakys et al (Phys. Rev. E \textbf{70}, 020101 (2004)). In order to have
an analytical understanding of the results, we have obtained an effective
Markovian approximation, that allows us to make a systematic study of the
effect of such kind of noises on the SR phenomenon. The comparison of numerical
and analytical results shows an excellent qualitative agreement indicating that
the effective Markovian approximation is able to correctly describe the general
trends.Comment: 11 pages, 6 figures, submitted to Euro.Phys.J.
Exact Phase Solutions of Nonlinear Oscillators on Two-dimensional Lattice
We present various exact solutions of a discrete complex Ginzburg-Landau
(CGL) equation on a plane lattice, which describe target patterns and spiral
patterns and derive their stability criteria. We also obtain similar solutions
to a system of van der Pol's oscillators.Comment: Latex 11 pages, 17 eps file
Renormalization group approach to vibrational energy transfer in protein
Renormalization group method is applied to the study of vibrational energy
transfer in protein molecule. An effective Lagrangian and associated equations
of motion to describe the resonant energy transfer are analyzed in terms of the
first-order perturbative renormalization group theory that has been developed
as a unified tool for global asymptotic analysis. After the elimination of
singular terms associated with the Fermi resonance, amplitude equations to
describe the slow dynamics of vibrational energy transfer are derived, which
recover the result obtained by a technique developed in nonlinear optics [S.J.
Lade, Y.S. Kivshar, Phys. Lett. A 372 (2008) 1077].Comment: 11 page
RF amplification property of the MgO-based magnetic tunnel junction using field-induced ferromagnetic resonance
The radio-frequency (RF) voltage amplification property of a tunnel
magnetoresistance device driven by an RF external-magnetic-field-induced
ferromagnetic resonance was studied. The proposed device consists of a magnetic
tunnel junction (MTJ) and an electrically isolated coplanar waveguide. The
input RF voltage applied to the waveguide can excite the resonant dynamics in
the free layer magnetization, leading to the generation of an output RF voltage
under a DC bias current. The dependences of the RF voltage gain on the static
external magnetic field strength and angle were systematically investigated.
The design principles for the enhancement of the gain factor are also
discussed.Comment: 12 pages, 3 figure
Crossover behavior and multi-step relaxation in a schematic model of the cut-off glass transition
We study a schematic mode-coupling model in which the ideal glass transition
is cut off by a decay of the quadratic coupling constant in the memory
function. (Such a decay, on a time scale tau_I, has been suggested as the
likely consequence of activated processes.) If this decay is complete, so that
only a linear coupling remains at late times, then the alpha relaxation shows a
temporal crossover from a relaxation typical of the unmodified schematic model
to a final strongly slower-than-exponential relaxation. This crossover, which
differs somewhat in form from previous schematic models of the cut-off glass
transition, resembles light-scattering experiments on colloidal systems, and
can exhibit a `slower-than-alpha' relaxation feature hinted at there. We also
consider what happens when a similar but incomplete decay occurs, so that a
significant level of quadratic coupling remains for t>>tau_I. In this case the
correlator acquires a third, weaker relaxation mode at intermediate times. This
empirically resembles the beta process seen in many molecular glass formers. It
disappears when the initial as well as the final quadratic coupling lies on the
liquid side of the glass transition, but remains present even when the final
coupling is only just inside the liquid (so that the alpha relaxation time is
finite, but too long to measure). Our results are suggestive of how, in a
cut-off glass, the underlying `ideal' glass transition predicted by
mode-coupling theory can remain detectable through qualitative features in
dynamics.Comment: 14 pages revtex inc 10 figs; submitted to pr
- …