23 research outputs found

    Repair of Noise-Induced Damage to Stereocilia F-Actin Cores Is Facilitated by XIRP2 and Its Novel Mechanosensor Domain

    Get PDF
    Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as \u27gaps\u27 in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric Ī³-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss

    Predicting and controlling the reactivity of immune cell populations against cancer

    Get PDF
    Heterogeneous cell populations form an interconnected network that determine their collective output. One example of such a heterogeneous immune population is tumor-infiltrating lymphocytes (TILs), whose output can be measured in terms of its reactivity against tumors. While the degree of reactivity varies considerably between different TILs, ranging from null to a potent response, the underlying network that governs the reactivity is poorly understood. Here, we asked whether one can predict and even control this reactivity. To address this we measured the subpopulation compositions of 91 TILs surgically removed from 27 metastatic melanoma patients. Despite the large number of subpopulations compositions, we were able to computationally extract a simple set of subpopulation-based rules that accurately predict the degree of reactivity. This raised the conjecture of whether one could control reactivity of TILs by manipulating their subpopulation composition. Remarkably, by rationally enriching and depleting selected subsets of subpopulations, we were able to restore anti-tumor reactivity to nonreactive TILs. Altogether, this work describes a general framework for predicting and controlling the output of a cell mixture

    Ethical considerations of medical nutritional therapy at end of life: the Israel perspective

    No full text
    Summary: The major ethical dilemma regarding feeding a person at the end of their life in Israel is related to the medical team's ability to not provide food. In addition to the medical indications, the decision-making process needs to include ethnic considerations, religious positions and a strong collective memory related to the Holocaust and post-Holocaust behavior. An Expert group of professionals regularly faced with these dilemmas gathered to address this issue. The group included Nutrition Specialists, Neurologists, Geriatricians, Oncologists and Specialists in palliative care, Nurses, Dieticians, Speech therapists but also Lawyers and Religion experts.The conclusions suggested: 1) One should evaluate the patient's ability to eat safely and sufficiently, assessed by speech therapist and dietician evaluations. 2) If not successful, a discussion between the team, the patient, if available, and the family is initiated. 3) If oral nutrition is possible it is encouraged. 4) If not, artificial nutrition should be discussed. 5) The family's will to never stop providing food and water according to Jewish law has to be acknowledged when the medical team does not suggest nutritional therapy. Emotional aspects, religious beliefs and nutritional indications have to be reconciled and a consensus should be reached

    High-throughput analysis of the transcriptional patterns of sexual genes in malaria

    No full text
    Abstract Background Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. Methods We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. Results We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48Ā h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. Conclusions Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples.Ā The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation. Graphical Abstrac
    corecore