15 research outputs found
Optimization of gas injection conditions during deposition of AlN layers by novel reactive GIMS method
In 2011, we proposed a novel magnetron sputtering method. It involved the use of pulsed injection of working gas for the initiation and control of gas discharge during reactive sputtering of an AlN layer (Gas Injection Magnetron Sputtering – GIMS). Unfortunately, the presence of Al–Al bonds was found in XPS spectra of the AlN layers deposited by GIMS onto Si substrate. Our studies reported in this paper proved that the synchronization of time duration of the pulses of both gas injection and applied voltage, resulted in the elimination of Al–Al bonds in the AlN layer material, which was confirmed by the XPS studies. In our opinion the most probable reason of Al–Al bonds in the AlN layers deposited by the GIMS was the self-sputtering of the Al target in the final stage of the pulsed discharge
Multi-component low and high entropy metallic coatings synthesized by pulsed magnetron sputtering
This paper presents the findings of the synthesis of multicomponent (Al, W,
Ni, Ti, Nb) alloy coatings from mosaic targets. For the study, a pulsed
magnetron sputtering method was employed under different plasma generation
conditions: modulation frequency (10 Hz and 1000 Hz), and power (600 W and 1000
W). The processes achieved two types of alloy coatings, high entropy and
classical alloys. After the deposition processes, scanning electron microscopy,
X-ray diffraction, and energy-dispersive X-ray spectroscopy techniques were
employed to find the morphology, thickness, and chemical and phase compositions
of the coatings. Nanohardness and its related parameters, namely H3.Er2, H.E,
and 1.Er2H ratios, were measured. An annealing treatment was performed to
estimate the stability range for the selected coatings. The results indicated
the formation of as-deposited coatings exhibiting an amorphous structure as a
single-phase solid solution. The process parameters had an influence on the
resulting morphology-a dense and homogenous as well as a columnar morphology,
was obtained. The study compared the properties of high-entropy alloy (HEA)
coatings and classical alloy coatings concerning their structure and chemical
and phase composition. It was found that the change of frequency modulation and
the post-annealing process contributed to the increase in the hardness of the
material in the case of HEA coatings
The role of magnetic energy on plasma localization during the glow discharge under reduced pressure
In this work, we present the first results of our research on the synergy of fields, electric and magnetic, in the initiation and development of glow discharge under reduced pressure. In the two-electrode system under reduced pressure, the breakdown voltage characterizes a minimum energy input of the electric field to initiate and sustain the glow discharge. The glow discharge enhanced by the magnetic field applied just above the surface of the cathode influences the breakdown voltage decreasing its value. The idea of the experiment was to verify whether the contribution of potential energy of the magnetic field applied around the cathode is sufficiently effective to locate the plasma of glow discharge to the grounded cathode, which, in fact, is the part of a vacuum chamber wall (the anode is positively biased in this case). In our studies, we used the grounded magnetron unit with positively biased anode in order to achieve favorable conditions for the deposition of thin films on fibrous substrates such as fabrics for metallization, assuming that locally applied magnetic field can effectively locate plasma. The results of our studies (Paschen curve with the participation of the magnetic field) seem to confirm the validity of the research assumption. What is the most spectacular - the glow discharge was initiated between introduced into the chamber anode and the grounded cathode of magnetron ‘assisted’ by the magnetic field (discharge did not include the area of the anode, which is a part of the magnetron construction)
Dependence of the specific features of two PAPVD methods: Impulse Plasma Deposition (IPD) and Pulsed Magnetron Sputtering (PMS) on the structure of Fe–Cu alloy layers
This paper describes the study of the structural properties of the alloy layers prepared by two different, impulsively working PAPVD methods: the Pulsed Magnetron Sputtering (PMS) and the Impulse Plasma Deposition (IPD). The Fe–Cu alloy layers were synthesized. The results of our investigation revealed a nanocrystalline structure of the layers. The differences in the phase composition of the Fe–Cu alloy layers produced by these two methods were observed. The synthesis of the Fe–Cu layers by using the Pulsed Magnetron Sputtering method resulted in obtaining the two-phase, polycrystalline structures (fcc-Cu and bcc-Fe). In this case the clear evidence of mixing between the iron and copper atoms was not observed. The Fe–Cu layers deposited by the Impulse Plasma Deposition method were characterized by the non-equilibrium phase composition – the presence of one-phase supersaturated solid solution (fcc-Cu(Fe) or bcc-Fe(Cu)) was formed in immiscible systems. These results suggest a short-distance diffusion between the neighboring nanoparticles of the two metals (Cu and Fe) occurring during the IPD layers growth
Research on interactions of plasma streams with CFC targets in the Rod Plasma Injector facility
This paper present results of optical spectroscopy studies of interactions of intense plasma streams with a solid target made of carbon fibre composite (CFC). The experiments were carried out within the Rod Plasma Injector (RPI) IBIS facility. The optical measurements were performed first for a freely propagating plasma stream in order to determine the optimal operational parameters of this facility. Optical emission spectra (OES) were recorded for different operational modes of the RPI IBIS device, and spectral lines were identified originating from the working gas (deuterium) as well as some lines from the electrode material (molybdenum). Subsequently, optical measurements of plasma interacting with the CFC target were performed. In the optical spectra recorded with the irradiated CFC samples, in addition to deuterium and molybdenum lines, many carbon lines, which enabled to estimate erosion of the investigated targets, were recorded. In order to study changes in the irradiated CFC samples, their surfaces were analysed (before and after several plasma discharges) by means of scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) techniques. The analysis of the obtained SEM images showed that the plasma irradiation induces noticeable changes in the surface morphology, for example vaporisation of some carbon fibres and formation of microcracks. The obtained EDS images showed that upon the irradiated target surface, some impurity ions are also deposited, particularly molybdenum ions from the applied electrodes