4 research outputs found

    The production of artemisinin precursors in tobacco

    No full text
    Artemisinin, in the form of artemisinin-based combination therapies (ACTs), is currently the most important compound in the treatment of malaria. The current commercial source of artemisinin is Artemisia annua, but this represents a relatively expensive source for supplying the developing world. In this study, the possibility of producing artemisinin in genetically modified plants is investigated, using tobacco as a model. Heterologous expression of A. annua amorphadiene synthase and CYP71AV1 in tobacco led to the accumulation of amorphadiene and artemisinic alcohol, but not artemisinic acid. Additional expression of artemisinic aldehyde \u39411(13) double-bond reductase (DBR2) with or without aldehyde dehydrogenase 1 (ALDH1) led to the additional accumulation dihydroartemisinic alcohol. The above-mentioned results and in vivo metabolic experiments suggest that amorphane sesquiterpenoid aldehydes are formed, but conditions in the transgenic tobacco cells favour reduction to alcohols rather than oxidation to acids. The biochemical and biotechnological significance of these results are discussed.Peer reviewed: YesNRC publication: Ye

    The biosynthesis of Caryophyllaceae-like cyclic peptides in Saponaria vaccaria L. from DNA-encoded precursors

    No full text
    Cyclic peptides (CPs) are produced in a very wide range of taxa. Their biosynthesis generally involves either non-ribosomal peptide synthases or ribosome-dependent production of precursor peptides. Plants within the Caryophyllaceae and certain other families produce CPs which generally consist of 5\u20139 proteinogenic amino acids. The biological roles for these CPs in the plant are not very clear, but many of them have activity in mammalian systems. There is currently very little known about the biosynthesis of CPs in the Caryophyllaceae. A collection of expressed sequence tags from developing seeds of Saponaria vaccaria was investigated for information about CP biosynthesis. This revealed genes that appeared to encode CP precursors which are subsequently cyclized to mature CPs. This was tested and confirmed by the expression of a cDNA encoding a putative precursor of the CP segetalin A in transformed S. vaccaria roots. Similarly, extracts of developing S. vaccaria seeds were shown to catalyze the production of segetalin A from the same putative (synthetic) precursor. Moreover, the presence in S. vaccaria seeds of two segetalins, J [cyclo(FGTHGLPAP)] and K [cyclo(GRVKA)], which was predicted by sequence analysis, was confirmed by liquid chromatography/mass spectrometry. Sequence analysis also predicts the presence of similar CP precursor genes in Dianthus caryophyllus and Citrus spp. The data support the ribosome-dependent biosynthesis of Caryophyllaceae-like CPs in the Caryophyllaceae and RutaceaePeer reviewed: YesNRC publication: Ye

    A Bibliography on Polish Americans, 2006–2010

    No full text
    corecore