511 research outputs found

    Resonant Activation Phenomenon for Non-Markovian Potential-Fluctuation Processes

    Full text link
    We consider a generalization of the model by Doering and Gadoua to non-Markovian potential-switching generated by arbitrary renewal processes. For the Markovian switching process, we extend the original results by Doering and Gadoua by giving a complete description of the absorption process. For all non-Markovian processes having the first moment of the waiting time distributions, we get qualitatively the same results as in the Markovian case. However, for distributions without the first moment, the mean first passage time curves do not exhibit the resonant activation minimum. We thus come to the conjecture that the generic mechanism of the resonant activation fails for fluctuating processes widely deviating from Markovian.Comment: RevTeX 4, 5 pages, 4 figures; considerably shortened version accepted as a brief report to Phys. Rev.

    On Orbits of the Ring Zmn under Action of the Group SL(m, Zn)

    Get PDF
    We consider the action of the finite matrix group SL(m,Zn ) on the ring Zmn. We determine orbits of this action for n arbitrary natural number. It is a generalization of the task which was studied by A. A. Kirillov for m = 2 and n prime number

    Critical Current 0-Ď€\pi Transition in Designed Josephson Quantum Dot Junctions

    Full text link
    We report on quantum dot based Josephson junctions designed specifically for measuring the supercurrent. From high-accuracy fitting of the current-voltage characteristics we determine the full magnitude of the supercurrent (critical current). Strong gate modulation of the critical current is observed through several consecutive Coulomb blockade oscillations. The critical current crosses zero close to, but not at, resonance due to the so-called 0-Ď€\pi transition in agreement with a simple theoretical model.Comment: 5 pages, 4 figures, (Supplementary information available at http://www.fys.ku.dk/~hij/public/nl_supp.pdf

    Simple models suffice for the single dot quantum shuttle

    Full text link
    A quantum shuttle is an archetypical nanoelectromechanical device, where the mechanical degree of freedom is quantized. Using a full-scale numerical solution of the generalized master equation describing the shuttle, we have recently shown [Novotn\'{y} {\it et al.}, Phys. Rev. Lett. {\bf 92}, 248302 (2004)] that for certain limits of the shuttle parameters one can distinguish three distinct charge transport mechanisms: (i) an incoherent tunneling regime, (ii) a shuttling regime, where the charge transport is synchronous with the mechanical motion, and (iii) a coexistence regime, where the device switches between the tunneling and shuttling regimes. While a study of the cross-over between these three regimes requires the full numerics, we show here that by identifying the appropriate time-scales it is possible to derive vastly simpler equations for each of the three regimes. The simplified equations allow a clear physical interpretation, are easily solved, and are in good agreement with the full numerics in their respective domains of validity.Comment: 23 pages, 14 figures, invited paper for the Focus issue of the New Journal of Physics on Nano-electromechanical system

    Support for Expert Estimations in Transportation Projects

    Get PDF
    This paper deals with risk analysis as a part of the financial assessment of transportation projects. Two approaches to risk assessment are discussed. A risk can be evaluated either directly in terms of the probabilistic distribution of the assessment criterion; or an indirect determination of the risk can be applied without constructing the probability distribution, but by determining the characteristic features of the project.

    Full counting statistics of nano-electromechanical systems

    Full text link
    We develop a theory for the full counting statistics (FCS) for a class of nanoelectromechanical systems (NEMS), describable by a Markovian generalized master equation. The theory is applied to two specific examples of current interest: vibrating C60 molecules and quantum shuttles. We report a numerical evaluation of the first three cumulants for the C60-setup; for the quantum shuttle we use the third cumulant to substantiate that the giant enhancement in noise observed at the shuttling transition is due to a slow switching between two competing conduction channels. Especially the last example illustrates the power of the FCS.Comment: 7 pages, 3 figures; minor changes - final version as published in Europhys. Let

    Finding the optimum activation energy in DNA breathing dynamics: A Simulated Annealing approach

    Full text link
    We demonstrate how the stochastic global optimization scheme of Simulated Annealing can be used to evaluate optimum parameters in the problem of DNA breathing dynamics. The breathing dynamics is followed in accordance with the stochastic Gillespie scheme with the denaturation zones in double stranded DNA studied as a single molecule time series. Simulated Annealing is used to find the optimum value of the activation energy for which the equilibrium bubble size distribution matches with a given value. It is demonstrated that the method overcomes even large noise in the input surrogate data.Comment: 9 pages, 4 figures, iop article package include

    On apparent breaking the second law of thermodynamics in quantum transport studies

    Full text link
    We consider a model for stationary electronic transport through a one-dimensional chain of two leads attached to a perturbed central region (quantum dot) in the regime where the theory proposed recently by Capek for a similar model of phonon transport predicts the striking phenomenon of a permanent current between the leads. This result based on a rigorous but asymptotic Davies theory is at variance with the zero current yielded by direct transport calculations which can be carried out in the present model. We find the permanent current to be within the error of the asymptotic expansion for finite couplings, and identify cancelling terms of the same order.Comment: 5 pages, 3 figure

    Analytical calculation of the excess current in the OTBK theory

    Full text link
    We present an analytical derivation of the excess current in Josephson junctions within the Octavio-Tinkham-Blonder-Klapwijk theory for both symmetric and asymmetric barrier strengths. We confirm the result found numerically by Flensberg et al. for equal barriers [Phys. Rev. B 38, 8707 (1988)], including the prediction of negative excess current for low transparencies, and we generalize it for differing barriers. Our analytical formulae provide for convenient fitting of experimental data, also in the less studied, but practically relevant case of the barrier asymmetry.Comment: 13 pages, 3 figures, submitted to Superconductor Science and Technolog

    Electron transport in single wall carbon nanotube weak links in the Fabry-Perot regime

    Full text link
    We fabricated reproducible high transparency superconducting contacts consisting of superconducting Ti/Al/Ti trilayers to gated single-walled carbon nanotubes (SWCNTs). The reported semiconducting SWCNT have normal state differential conductance up to 3e2/h3e^2/h and exhibit clear Fabry-Perot interference patterns in the bias spectroscopy plot. We observed subharmonic gap structure in the differential conductance and a distinct peak in the conductance at zero bias which is interpreted as a manifestation of a supercurrent. The gate dependence of this supercurrent as well as the excess current are examined and compared to a coherent theory of superconducting point contacts with good agreement.Comment: 10 pages, 4 figure
    • …
    corecore