On Orbits of the Ring Z_{n}^{m} under Action of the Group $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$

P. Novotný, J. Hrivnák

Abstract

We consider the action of the finite matrix group $S L\left(m, Z_{n}\right)$ on the ring Z_{n}^{m}. We determine orbits of this action for n arbitrary natural number. It is a generalization of the task which was studied by A. A. Kirillov for $m=2$ and n prime number.

Keywords: ring, finite group.

1 Introduction

The important role of symmetries in classical and quantum physics is well known. We focus on so called discrete quantum physics; this means that the corresponding Hilbert space is finite dimensional [1, 2]. Well known are also 2×2 Pauli matrices. Besides spanning real Lie algebra su(2), they form a fine grading of $\mathrm{sl}(2, \mathrm{C})$. The fine gradings of a given Lie algebra are preferred bases which yield quantum observables with additive quantum numbers.

The generalized $n \times n$ Pauli matrices were described in [3]. For $n=3$ these 3×3 Pauli matrices form one of four non-equivalent gradings of sl(3,C). Other fine gradings are Cartan decomposition and the grading which corresponds to Gell-Mann matrices $[4,5]$. The symmetries of the fine grading of $\operatorname{sl}(n, \mathrm{C})$ associated with these generalized Pauli matrices were studied only recently in [6]. This work pointed out the importance of the finite group $\operatorname{SL}\left(2, \mathrm{Z}_{n}\right)$ as the group of symmetry of the Pauli gradings. The additive quantum numbers, mentioned above, form in this case the finite associative additive ring $\mathrm{Z}_{n} \times \mathrm{Z}_{n}$. The action of $\operatorname{SL}\left(2, \mathrm{Z}_{n}\right)$ on $\mathrm{Z}_{n} \times \mathrm{Z}_{n}$ then represents the symmetry transformations of Pauli gradings of $\mathrm{sl}(n, \mathrm{C})$. The orbits of this action form such points in $\mathrm{Z}_{n} \times \mathrm{Z}_{n}$ which can be reached by symmetries.

For the purpose of so called graded contractions [7], it became convenient to study the action of $\operatorname{SL}\left(2, \mathrm{Z}_{n}\right)$ on various types of Cartesian products of $\mathrm{Z}_{n}[8]$. Note that the orbits of $S L\left(2, \mathrm{Z}_{p}\right)$ on Z_{p}^{2}, where p is a prime number were, considered in [9] §16.3. The purpose of this paper is to generalize this result to orbits of $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ on Z_{n}^{m} where m, n are arbitrary natural numbers.

2 Action of the group $S L\left(m, Z_{n}\right)$

Throughout the paper we shall use the following notation: $\mathrm{N}:=\{1,2,3, \ldots\}$ denotes the set of all natural numbers and $P:=\{2,3,5, \ldots\}$ denotes the set of all prime numbers. Let n be a natural number, then the set $\{0,1, \ldots, n-1\}$ forms, together with operations $+_{\bmod n}, \times_{\bmod n}$, an associative commutative ring with unity. We will denote this ring, as usual, by Z_{n}. It is well known that for n prime the ring Z_{n} is a field.

Let us consider m, n to be arbitrary natural numbers. We denote by

$$
\mathrm{Z}_{n}^{m}=\underbrace{\mathrm{Z}_{n} \times \mathrm{Z}_{n} \times \ldots \times \mathrm{Z}_{n}}_{m}
$$

the Cartesian product of m rings Z_{n}. It is clear that Z_{n}^{m} with operations $+_{\bmod n}, \times_{\bmod n}$ defined elementwise is an associative commutative ring with unity again. It contains divisors of zero and we call its elements row vectors or points. Furthermore we call the zero element $(0, \ldots, 0)$ zero vector and denote it simply by 0 .

We denote by $\mathrm{Z}_{n}^{m, m}$ the set of all $m \times m$ matrices with elements in the $\operatorname{ring} \mathrm{Z}_{n}$. For $k \in \mathrm{~N}$ and $\mathrm{A} \in \mathrm{Z}_{n}^{m, m}$ we will denote by (A) $\bmod k$ a matrix which arose from matrix A after application of operation modulo k on its elements.

In the following we shall frequently use a product on the set $\mathrm{Z}_{n}^{m, m}$ defined as matrix multiplication together with operation modulo n, i.e.

$$
\begin{equation*}
\mathrm{A}, \mathrm{~B} \in \mathrm{Z}_{n}^{m, m} \rightarrow(\mathrm{AB})_{\bmod n} \tag{2.1}
\end{equation*}
$$

This product is, due to the associativity of matrix multiplication, associative again and the set $\mathrm{Z}_{n}^{m, m}$ equipped with this product forms a semigroup. If we take matrices $\mathrm{A}, \mathrm{B} \in \mathrm{Z}_{n}^{m, m}$, such that $\operatorname{det}(\mathrm{A})=\operatorname{det}(\mathrm{B})=1(\bmod n)$, then $\operatorname{det}\left((\mathrm{AB})_{\bmod n}\right)=1$ $(\bmod n)$ holds. It follows that the subset of $\mathrm{Z}_{n}^{m, m}$ formed by all matrices with the determinant equal to unity modulo n is a semigroup.
Definition 2.1: For $m, n \in \mathrm{~N}, n \geq 2$ we define

$$
S L\left(m, \mathrm{Z}_{n}\right):=\left\{\mathrm{A} \in \mathrm{Z}_{n}^{m, m} \mid \operatorname{det} \mathrm{A}=1(\bmod n)\right\} .
$$

Now we show that $S L\left(m, \mathrm{Z}_{n}\right)$ with operation (2.1) forms a group. Because $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ is a semigroup, it is sufficient to show that there exists a unit element and a right inverse element. Unit matrix is clearly the unit element. In order to find a right inverse element consider the following equation

$$
\begin{equation*}
\mathrm{AA}^{\mathrm{adj}}=\operatorname{det}(\mathrm{A}) \mathrm{I} . \tag{2.2}
\end{equation*}
$$

The symbol $\mathrm{A}^{\text {adj }}$ denotes the adjoint matrix defined by $\left(\mathrm{A}^{\text {adj }}\right)_{i, j}:=(-1)^{i+j} \operatorname{det} \mathrm{~A}(j, i)$, where $\mathrm{A}(j, i)$ is the matrix obtained from matrix A by omitting the j-th row and the i-th column. The equation (2.2) holds for an arbitrary matrix, hence it holds for matrices from $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$, and evidently holds after application of operation modulo n on both sides. Consequently, for $\mathrm{A} \in S L\left(m, \mathrm{Z}_{n}\right)$, we have
$\mathrm{AA}^{\text {adj }}=\mathrm{I}(\bmod n)$, i.e. $\left(\mathrm{AA}^{\mathrm{adj}}\right)_{\bmod n}=\mathrm{I}$.
Therefore $A^{\text {adj }}$ is the right inverse element corresponding to matrix A, and consequently $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ is a group.

The group $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ is finite and its order was computed by You Hong and Gao You in [10] (see also [11], p. 86). If $n \in \mathrm{~N}, n \geq 2$ is written in the form $n=\prod_{i=1}^{r} p_{i}^{k_{i}}$, where p_{i} are distinct primes, then according to [10], the order of $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ is

$$
\begin{equation*}
\left|S L\left(m, \mathrm{Z}_{n}\right)\right|=n^{m^{2}-1} \prod_{i=1}^{r} \prod_{j=2}^{m}\left(1-\frac{1}{p_{i}^{j}}\right) . \tag{2.3}
\end{equation*}
$$

Let G be a group and $\mathrm{X} \neq 0$ a set. Recall that a mapping $\psi: G \times \mathrm{X} \rightarrow \mathrm{X}$ is called a right action of the group G on the set X if the following conditions hold for all elements $x \in \mathrm{X}$:

1. $\psi(g h, x)=\psi(g, \psi(h, x))$ for all $h, g \in G$.
2. $\psi(e, x)=x$, where e is the unit element of G.

Let ψ be an action of a group G on a set X . A subset of G, $\{g \in G \mid \psi(g, a)=a\}$ is called a stability subgroup of the element $a \in \mathrm{X}$. A subset of $\mathrm{X},\{b \in X \mid \exists g \in G, b=\psi(g, a)\}$ is called an orbit of the element $a \in \mathrm{X}$ with respect to the action ψ of group G.

Let us note that if ψ is an action of a group G on a set X then relation \sim defined by formula
$a, b \in \mathrm{X}, \quad a \sim b \Leftrightarrow \exists g \in G, \psi(g, a)=b$
is an equivalence on the set X and the corresponding equivalence classes are orbits.
Definition 2.2: For $m, n \in \mathrm{~N}, n \geq 2$ we define a right action ψ of the group $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ on the set Z_{n}^{m} as right multiplication of the row vector $a \in \mathrm{Z}_{n}^{m}$ by the matrix $\mathrm{A} \in S L\left(m, \mathrm{Z}_{n}\right)$ modulo n :

$$
\psi(\mathrm{A}, a):=(a \mathrm{~A})_{\bmod n}
$$

Henceforth we will omit the symbol $\bmod n$ and write this action simply as $a \mathrm{~A}$.

3 Orbits for $\boldsymbol{n}=\boldsymbol{p}$ prime number

The purpose of this section is to describe orbits of the ring Z_{p}^{m} under the action of the group $\operatorname{SL}\left(m, \mathrm{Z}_{p}\right)$, where p is prime. Trivially, for $m=1$ is $S L\left(1, \mathrm{Z}_{p}\right)=\{(1)\}$ and any orbit has the form $\{a\}$ for $a \in \mathrm{Z}_{p}$. Consequently we will further consider $m \geq 2$. It is clear that the zero element can be transformed by the action of $S L\left(m, \mathrm{Z}_{p}\right)$ to itself only, thus it forms a one-point orbit and its stability subgroup is the whole $S L\left(m, \mathrm{Z}_{p}\right)$. Let us take a nonzero element, for instance $(0, \ldots, 0,1) \in \mathrm{Z}_{p}^{m}$, and find its orbit. An arbitrary matrix A from $S L\left(m, \mathrm{Z}_{p}\right)$ acts on this element as follows

$$
\begin{aligned}
& (0, \ldots, 0,1)\left(\begin{array}{cccc}
A_{1,1} & A_{1,2} & \ldots & A_{1, m} \\
\vdots & \vdots & \vdots & \vdots \\
A_{m-1,1} & A_{m-1,2} & \ldots & A_{m-1, m} \\
A_{m, 1} & A_{m, 2} & \ldots & A_{m, m}
\end{array}\right)= \\
& =\left(A_{m, 1}, A_{m, 2}, \ldots A_{m, m}\right)(\bmod p) .
\end{aligned}
$$

Thus the orbit of element $(0, \ldots, 0,1)$ contains the last row of any matrix from $S L\left(m, \mathrm{Z}_{p}\right)$. It follows from $\operatorname{det}(\mathrm{A})=1$ that these rows cannot be zero and we show that they can be equal to an arbitrary nonzero element from Z_{p}^{m}. Let
$\left(A_{m, 1}, A_{m, 2}, \ldots A_{m, m}\right) \in \mathrm{Z}_{p}^{m}$ be a nonzero element, which means $\exists j \in\{1,2, \ldots, m\}$ such that $A_{m j} \neq 0$, then matrix A can be chosen with the determinant equal to 1 . Without loss of generality consider $j=1$:

$$
\mathrm{A}=\left(\begin{array}{cccc}
0 & & & \\
\vdots & & \mathrm{~B} & \\
0 & & & \\
A_{m, 1} & A_{m, 2} & \ldots & A_{m, m}
\end{array}\right)
$$

where $\mathbf{B}=\operatorname{diag}\left(1, \ldots, 1,(-1)^{1+m}\left(A_{m, 1}\right)^{-1}\right)$.
Here $\left(A_{m, 1}\right)^{-1}$ denotes the inverse element to $A_{m, 1}$ in the field Z_{p}.

We conclude that in the case of $n=p$ prime there are only two orbits:

1. one-point orbit represented by the zero element $(0, \ldots, 0,0)$
2. $\left(p^{m}-1\right)$-point orbit $\mathrm{Z}_{p}^{m} \backslash\{0\}$ represented by the element $(0, \ldots, 0,1)$

4 Orbits for \boldsymbol{n} natural number

We consider an arbitrary natural number n of the form

$$
n=\prod_{i=1}^{r} p_{i}^{k_{i}},
$$

where p_{i} are distinct primes and k_{i} are natural numbers.
The action of the group $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ on the ring Z_{n}^{m} was established in definition 2.2 as a right multiplication of a row vector from Z_{n}^{m} by a matrix from $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ modulo n. We define an equivalence induced by this action on the ring Z_{n}^{m} according to (2.4). Elements $a=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in \mathrm{Z}_{n}^{m}$ are equivalent $a \sim b$ if and only if there exists $\mathrm{A} \in S L\left(m, \mathrm{Z}_{n}\right)$ such that $a \mathrm{~A}=b$ i.e.
$\sum_{j=1}^{m} a_{j} A_{i, j}=b_{i}(\bmod n), \quad \forall i \in\{1,2, \ldots, m\}$.
Definition 4.1: Let \sim be the equivalence on Z_{n}^{m} defined by (4.1). For any divisor d of n, we will denote by $\mathrm{Or}_{m, n}(d)$ the class of equivalence (orbit) containing the point $\left(0, \ldots, 0,(d)_{\bmod n}\right)$, i.e.
$\operatorname{Or}_{m, n}(d)=\left\{a \in \mathrm{Z}_{n}^{m} \mid a \sim\left(0, \ldots,(d)_{\bmod n}\right)\right\}$.
Note that the orbit $\mathrm{Or}_{m, n}(n)$ contains only the zero vector, because the zero vector can be transformed by the action of $S L\left(m, \mathrm{Z}_{n}\right)$ only to itself. We shall see later that any orbit in Z_{n}^{m} has the form (4.2).
Definition 4.2: A greatest common divisor of the element $a=\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in \mathrm{Z}_{n}^{m}$ and the number $n \in \mathrm{~N}$ is the greatest common divisor of all components of the element a and the number n in the ring of integers Z . We denote it by

$$
\begin{equation*}
\operatorname{gcd}(a, n):=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{m}, n\right) \tag{4.3}
\end{equation*}
$$

Lemma 4.3: The action of the group $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ on the ring Z_{n}^{m} preserves the greatest common divisor of an arbitrary element $a \in \mathrm{Z}_{n}^{m}$ and the number n, i.e.
$\operatorname{gcd}(a \mathrm{~A}, n)=\operatorname{gcd}(a, n) \quad \forall a \in \mathrm{Z}_{n}^{m}, \forall \mathrm{~A} \in S L\left(m, \mathrm{Z}_{n}\right)$.
Proof: It follows from
$a \mathrm{~A}=\left(\sum_{i=1}^{m} a_{i} A_{i, 1}, \ldots, \sum_{i=1}^{m} a_{i} A_{i, m}\right)$ and
$\operatorname{gcd}(a, n) \mid \sum_{i=1}^{m} a_{i} A_{i, j}, \forall j \in\{1,2, \ldots, m\}$ that
$\operatorname{gcd}(a, n) \mid \operatorname{gcd}(a \mathrm{~A}, n)$, i.e. the greatest common divisor cannot decrease during this action. If we take an element $a \mathrm{~A}$ and a matrix A^{-1} we obtain
$\operatorname{gcd}(a \mathrm{~A}, n) \mid \operatorname{gcd}\left(a \mathrm{AA}^{-1}, n\right)=\operatorname{gcd}(a, n)$ and together with the
first condition we have $\operatorname{gcd}(a \mathrm{~A}, n)=\operatorname{gcd}(a, n)$.
QED
Corollary 4.4: For any divisor d of n the orbit $\operatorname{Or}_{m, n}(d)$ is a subset of $\left\{a \in \mathrm{Z}_{n}^{m} \mid \operatorname{gcd}(a, n)=d\right\}$.

We will show that the orbit $\operatorname{Or}_{m, n}(1)$ is equal to the set $\left\{a \in \mathrm{Z}_{n}^{m} \mid \operatorname{gcd}(a, n)=1\right\}$. From corollary 4.4 we know that $\operatorname{Or}_{m, n}(1)$ is the subset of $\left\{a \in \mathrm{Z}_{n}^{m} \mid \operatorname{gcd}(a, n)=1\right\}$ and we prove that they have the same number of elements. At first we determine the number of points in $\mathrm{Or}_{m, n}(1)$. For this purpose we determine the stability subgroup of the element $(0, \ldots, 0,1)$. It is obviously formed by matrices of the form
$\mathrm{A}=\left(\begin{array}{cccc}A_{1,1} & A_{1,2} & \ldots & A_{1, m} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m-1,1} & A_{m-1,2} & \ldots & A_{m-1, m} \\ 0 & 0 & \ldots & 1\end{array}\right), \quad \operatorname{det}(\mathrm{A})=1(\bmod n)$.
Expansion of this determinant gives
$1=\operatorname{det}(\mathrm{A})=(-1)^{m+m} \operatorname{det} \mathrm{~A}(m, m)=\operatorname{det} \mathrm{A}(m, m)(\bmod n)$.
Therefore the stability subgroup of the point $(0, \ldots, 0,1)$ is:
$S:=\left\{\left.\mathrm{A}=\left(\begin{array}{cccc} & & & A_{1, m} \\ & \mathrm{~B} & & A_{2, m} \\ & & & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right) \in S L\left(m, \mathrm{Z}_{n}\right) \right\rvert\, \mathrm{B} \in S L\left(m-1, \mathrm{Z}_{n}\right)\right\}$,
and its order is

$$
\begin{equation*}
|S|=n^{m^{2}-m-1} \prod_{i=1}^{r} \prod_{j=2}^{m-1}\left(1-p_{i}^{-j}\right) \tag{4.4}
\end{equation*}
$$

According to the Lagrange theorem, the product of the order and the index of an arbitrary subgroup of a given finite group is equal to the order of this group. If we define on the group $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$ a left equivalence induced by the stability subgroup S by formula

$$
\mathrm{A}, \mathrm{~B} \in S L\left(m, \mathrm{Z}_{n}\right) \quad \mathrm{A} \approx_{S} \mathrm{~B} \Leftrightarrow \mathrm{AB}^{-1} \in S
$$

then we obtain equivalence classes of the form $S \mathrm{~B}=\{\mathrm{AB} \mid \mathrm{A} \in S\}, \quad \mathrm{B} \in S L\left(m, \mathrm{Z}_{n}\right)$, i.e. right cosets from $S L\left(m, \mathrm{Z}_{n}\right) / S$. The number of these cosets is, by definition, the index of subgroup S. These cosets correspond one-to--one with the points of the orbit which includes the point $(0, \ldots, 0,1)$. Therefore the index of the stability subgroup S is equal to the number of points in this orbit. A similar calculation can be done for an arbitrary point in an arbitrary orbit. Thus we have the following proposition.
Proposition 4.5: The number of elements in an orbit is equal to the order of the group $S L\left(m, \mathrm{Z}_{n}\right)$ divided by the order of the stability subgroup of an arbitrary element in this orbit.

Using (2.3) and (4.4) we obtain that the number of points in the orbit $\mathrm{Or}_{m, n}(1)$ is equal to

$$
\begin{equation*}
\left|\operatorname{Or}_{m, n}(1)\right|=n^{m} \prod_{i=1}^{r}\left(1-p_{i}^{-m}\right) \tag{4.5}
\end{equation*}
$$

Now we will determine the number of all elements in Z_{n}^{m} that have the greatest common divisor with the number n equal to unity. This number is equal to the Jordan function.
Definition 4.6: For $m \in \mathrm{~N}$ a mapping $\varphi_{m}: \mathrm{N} \rightarrow \mathrm{N}$ defined by

$$
\begin{equation*}
\varphi_{m}(n)=\left|\left\{a \in \mathrm{Z}_{n}^{m} \mid \operatorname{gcd}(a, n)=1\right\}\right| \tag{4.6}
\end{equation*}
$$

is called the Jordan function of the order m.
We present, without proof, some basic properties of the Jordan function which can be found in [12].

Proposition 4.7: For the Jordan function φ_{m} of the order $m \in \mathrm{~N}$ and for any $n \in \mathrm{~N}$ holds:

1. $\varphi_{m}(n)=n^{m} \prod_{p \mid n, p \in \mathrm{P}}\left(1-p^{-m}\right)$
2. $\sum_{d \mid n, d \in \mathrm{~N}} \varphi_{m}(d)=n^{m}$
3. $\varphi_{m}\left(\frac{n}{d}\right)=\left|\left\{a \in \mathrm{Z}_{\frac{n}{d}}^{m} \left\lvert\, \operatorname{gcd}\left(a, \frac{n}{d}\right)=1\right.\right\}\right|=$

$$
\begin{equation*}
=\left|\left\{a \in \mathrm{Z}_{n}^{m} \mid \operatorname{gcd}(a, n)=d\right\}\right| \tag{4.9}
\end{equation*}
$$

The number of all elements in Z_{n}^{m}, which are co-prime with n, given by the first property of the Jordan function $\varphi_{m}(n)$ (4.7), is equal to the number of points in the orbit $\mathrm{Or}_{m, n}(1)$. Therefore the orbit $\operatorname{Or}_{m, n}(1)$ is formed by all elements in Z_{n}^{m} which are co-prime with n.

Proposition 4.8: For $m, n \in \mathrm{~N}, m \geq 2$ holds
$\operatorname{Or}_{m, n}(1)=\left\{a \in \mathrm{Z}_{n}^{m} \mid \operatorname{gcd}(a, n)=1\right\}$.

4.1 Orbits for $n=p^{k}$ power of a prime

Let us now consider n of the form $n=p^{k}$, where p is a prime number and $k \in \mathrm{~N}$, and determine orbits in this case.

Definition 4.1.1: For $j \in \mathrm{~N}, j \leq k$, we define a mapping $\mathrm{F}^{j}: \mathrm{Z}_{p^{k}}^{m} \rightarrow \mathrm{Z}_{p^{k}}^{m}$ by the formula

$$
\mathrm{F}^{j}(a)=\left(p^{j} \cdot a\right)_{\bmod p^{k}} \text { for any } a \in \mathrm{Z}_{p^{k}}^{m} .
$$

Lemma 4.1.2: Let a and b be two equivalent elements from $\mathrm{Z}_{p^{k}}^{m}$ and $j \leq k$. Then the elements $\mathrm{F}^{j}(a)$ and $\mathrm{F}^{j}(b)$ are equivalent as well.
Proof: Let $a, b \in \mathrm{Z}_{p^{k}}^{m}, a \sim b$. It follows from the definition of equivalence \sim that there exists a matrix $\mathrm{A} \in \operatorname{SL}\left(m, \mathrm{Z}_{p^{k}}\right)$ such that $a \mathrm{~A}=b$. Consequently $\mathrm{F}^{j}(a \mathrm{~A})=\mathrm{F}^{j}(b)$, where
$\mathrm{F}^{j}(a \mathrm{~A})=\left(p^{j} a \mathrm{~A}\right)_{\bmod p^{k}}=\left(p^{j} a\right)_{\bmod p^{k}}(\mathrm{~A})_{\bmod p^{k}}=\mathrm{F}^{j}(a) \mathrm{A}$.

Since we have $\mathrm{F}^{j}(a) \mathrm{A}=\mathrm{F}^{j}(b)$ and therefore $\mathrm{F}^{j}(a) \sim \mathrm{F}^{j}(b)$.
QED
Proposition 4.1.3: Any orbit in the ring $\mathrm{Z}_{p^{k}}^{m}$ has the form $\mathrm{Or}_{m, p^{k}}\left(p^{j}\right)=\left\{a \in \mathrm{Z}_{p^{k}}^{m} \mid \operatorname{gcd}\left(a, p^{k}\right)=p^{j}\right\}, 0 \leq j \leq k$,
and consists of $\left|\mathrm{Or}_{m, p^{k}}\left(p^{j}\right)\right|=\varphi_{m}\left(p^{k-j}\right)$ points.
Proof: From Lemma 4.1.2 it is clear that F^{j} maps the orbit $\mathrm{Or}_{m, p^{k}}(\mathrm{l})$ into the orbit $\mathrm{Or}_{m, p^{k}}\left(p^{j}\right)$ and from Corollary 4.4 we have
$F^{j}\left(\operatorname{Or}_{m, p^{k}}\left(p^{j}\right)\right) \subset \operatorname{Or}_{m, p^{k}}\left(p^{j}\right) \subset\left\{a \in \mathrm{Z}_{p^{k}}^{m} \mid \operatorname{gcd}\left(a, p^{k}\right)=p^{j}\right\}$.
Conversely,
$\left\{a \in \mathrm{Z}_{p^{k}}^{m} \mid \operatorname{gcd}\left(a, p^{k}\right)=p^{j}\right\}=\left\{p^{j} a \mid a \in \mathrm{Z}_{p^{k-j}}^{m}, \operatorname{gcd}\left(a, p^{k-j}\right)=1\right\}$
$\subset\left\{\left(p^{j} a\right)_{\bmod p^{k}} \mid a \in \mathrm{Z}_{p^{k}}^{m}, \operatorname{gcd}\left(a, p^{k}\right)=\mathrm{l}\right\}=\mathrm{F}^{j}\left(\mathrm{Or}_{m, p^{k}}(\mathrm{l})\right)$.
Thus we have
$\mathrm{F}^{j}\left(\operatorname{Or}_{m, p^{k}}(\mathrm{l})\right)=\operatorname{Or}_{m, p^{k}}\left(p^{j}\right)=\left\{a \in \mathrm{Z}_{p^{k}}^{m} \mid \operatorname{gcd}\left(a, p^{k}\right)=p^{j}\right\}$.
QED

4.2 Orbits for $n=p q, \operatorname{gcd}(p, q)=1$

Let us now consider n of the form $n=p q$, where $p q \in \mathrm{~N}$ are co-prime numbers. In this case it will be very useful to apply the Chinese remainder theorem [13].
Theorem 4.2.1: (Chinese remainder theorem)
Let $a_{1}, a_{2} \in \mathrm{Z}$. Let $p_{1}, p_{2} \in \mathrm{~N}$ be co-prime numbers. Then there exists $x \in Z$, such that

$$
x=a_{i}\left(\bmod p_{i}\right), \quad \forall i=1,2 .
$$

If x is a solution, then y is a solution if and only if

$$
x=y\left(\bmod p_{1} p_{2}\right) .
$$

Definition 4.2.2: For $p, q \in \mathrm{~N}, \operatorname{gcd}(p, q)=1$ we define a mapping G: $\mathrm{Z}_{p q}^{m} \rightarrow \mathrm{Z}_{p}^{m} \times \mathrm{Z}_{q}^{m}$ by the formula
$\mathrm{G}(a):=\left((a)_{\bmod p},(a)_{\bmod q}\right)$ for any $a \in \mathrm{Z}_{p q}^{m}$,
and a mapping g: $S L\left(m, \mathrm{Z}_{p q}\right) \rightarrow S L\left(m, \mathrm{Z}_{p}\right) \times S L\left(m, \mathrm{Z}_{q}\right)$ by the formula
$\mathrm{g}(\mathrm{A}):=\left((\mathrm{A})_{\bmod p},(\mathrm{~A})_{\bmod q}\right)$ for any $\mathrm{A} \in S L\left(m, \mathrm{Z}_{p q}\right)$.
It is clear from definition that G, g are homomorphisms and the Chinese remainder theorem implies that G, g are one-to-one correspondences. Thus we have the following proposition.
Proposition 4.2.3: The mapping G is an isomorphism of rings and the mapping g is an isomorphism of groups.

Further we determine orbits on the Cartesian product of rings $\mathrm{Z}_{p}^{m} \times \mathrm{Z}_{q}^{m}$. For this purpose we define the action of the Cartesian product of groups $S L\left(m, \mathrm{Z}_{p}\right) \times S L\left(m, \mathrm{Z}_{q}\right)$ on ring $\mathrm{Z}_{p}^{m} \times \mathrm{Z}_{q}^{m}$ by the formula
$a \mathrm{~A}=\left(a_{1}, a_{2}\right)\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)=\left(\left(a_{1} \mathrm{~A}_{1}\right)_{\bmod p},\left(a_{2} \mathrm{~A}_{2}\right)_{\bmod q}\right)$
for any $a=\left(a_{1}, a_{2}\right) \in \mathrm{Z}_{p}^{m} \times \mathrm{Z}_{q}^{m}$ and any
$\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right) \in S L\left(m, \mathrm{Z}_{p}\right) \times S L\left(m, \mathrm{Z}_{q}\right)$.

It follows from the definition of this action that orbits in $\mathrm{Z}_{p}^{m} \times \mathrm{Z}_{q}^{m}$ are Cartesian products of orbits in Z_{p}^{m} and Z_{q}^{m}.
Proposition 4.2.4: Let $p, q \in \mathrm{~N}$ be co-prime numbers. Then the mapping G provides one-to-one correspondence between the orbits in $\mathrm{Z}_{p q}^{m}$ and the Cartesian products of the orbits in Z_{p}^{m} and Z_{q}^{m}. Moreover, if $p_{1}\left|p, q_{1}\right| q$ and the orbits $\operatorname{Or}_{m, p}\left(p_{1}\right)$, $\operatorname{Or}_{m, q}\left(q_{1}\right)$ are of the form

$$
\begin{aligned}
& \operatorname{Or}_{m, p}\left(p_{1}\right)=\left\{a \in \mathrm{Z}_{p}^{m} \mid \operatorname{gcd}(a, p)=p_{1}\right\}, \\
& \operatorname{Or}_{m, q}\left(q_{1}\right)=\left\{a \in \mathrm{Z}_{q}^{m} \mid \operatorname{gcd}(a, q)=q_{1}\right\},
\end{aligned}
$$

then

$$
\begin{aligned}
\operatorname{Or}_{m, p q}\left(p_{1} q_{1}\right) & =\mathrm{G}^{-1}\left(\operatorname{Or}_{m, p}\left(p_{1}\right) \times \operatorname{Or}_{m, q}\left(q_{1}\right)\right) \\
& =\left\{a \in \mathrm{Z}_{p q}^{m} \mid \operatorname{gcd}(a, p q)=p_{1} q_{1}\right\}
\end{aligned}
$$

Proof: First, we prove that G and G^{-1} preserve equivalence, i.e.
$a \sim b \Leftrightarrow \mathrm{G}(a) \sim \mathrm{G}(b)$ for all $a, b \in \mathrm{Z}_{p q}^{m}$.
From the definition of equivalence we have
$a \sim b \Leftrightarrow \exists \mathrm{~A} \in S L\left(m, \mathrm{Z}_{p q}\right), a \mathrm{~A}=b \Leftrightarrow \mathrm{G}(a \mathrm{~A})=\mathrm{G}(b)$,
where

$$
\begin{aligned}
\mathrm{G}(a \mathrm{~A}) & =\left((a \mathrm{~A})_{\bmod p},(a \mathrm{~A})_{\bmod q}\right) \\
& =\left((a)_{\bmod p},(a)_{\bmod q}\right)\left((\mathrm{A})_{\bmod p},(\mathrm{~A})_{\bmod q}\right)= \\
& =\mathrm{G}(a) \mathrm{g}(\mathrm{~A}) .
\end{aligned}
$$

Because G and g are one-to-one correspondences we obtain
$a \sim b \Leftrightarrow a \mathrm{~A}=b \Leftrightarrow \mathrm{G}(a) \mathrm{g}(\mathrm{A})=\mathrm{G}(b) \Leftrightarrow \mathrm{G}(a) \sim \mathrm{G}(b)$.
Since the mapping G is an isomorphism and G, G^{-1} preserve equivalence, the orbits in the ring $\mathrm{Z}_{p q}^{m}$ correspond one-to-one with the orbits in the ring $\mathrm{Z}_{p}^{m} \times \mathrm{Z}_{q}^{m}$, and these are Cartesian products of orbits on Z_{p}^{m} and Z_{q}^{m}.

Now remain to prove that the orbit $\operatorname{Or}_{m, p q}\left(p_{1} q_{1}\right)$ corresponds to the orbit $\mathrm{Or}_{m, p}\left(p_{1}\right) \times \mathrm{Or}_{m, q}\left(q_{1}\right)$. It follows from the Chinese remainder theorem that G maps the set
$\left\{a \in \mathrm{Z}_{p q}^{m} \mid \operatorname{gcd}(a, p q)=p_{1} q_{1}\right\}$ on the set
$\left\{\left(a_{1}, a_{2}\right) \in \mathrm{Z}_{p}^{m} \times \mathrm{Z}_{q}^{m} \mid \operatorname{gcd}\left(a_{1}, p\right)=p_{1}, \operatorname{gcd}\left(a_{2}, q\right)=q_{1}\right\}$,
which is equal to the orbit $\mathrm{Or}_{m, p}\left(p_{1}\right) \times \operatorname{Or}_{m, q}\left(q_{1}\right)$. Therefore the set $\left\{a \in \mathrm{Z}_{p q}^{m} \mid \operatorname{gcd}(a, p q)=p_{1} q_{1}\right\}$ forms an orbit and from Corollary 4.4 it follows that
$\operatorname{Or}_{m, p q}\left(p_{1} q_{1}\right)=\left\{a \in \mathrm{Z}_{p q}^{m} \mid \operatorname{gcd}(a, p q)=p_{1} q_{1}\right\}$.
QED
As a corollary of Propositions 4.1.3 and 4.2.4 we obtain the following theorem.
Theorem 4.9: Consider the decomposition of the ring Z_{n}^{m}, $m \geq 2$ into orbits with respect to the action of the group $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$. Then
i) any orbit is equal to the orbit $\mathrm{Or}_{m, n}(d)$ for some divisor d of n, i.e.

$$
\mathrm{Z}_{n}^{m}=\bigcup_{d \mid n} \mathrm{Or}_{m, n}(d) ;
$$

ii) $\mathrm{Or}_{m, n}(d)=\left\{a \in \mathrm{Z}_{n}^{m} \mid \operatorname{gcd}(a, n)=d\right\}$;
iii) the number of points $\left|\mathrm{Or}_{m, n}(d)\right|$ in d-orbit is given by the Jordan function

$$
\left|\mathrm{Or}_{m, n}(d)\right|=\varphi_{m}\left(\frac{n}{d}\right)=\left(\frac{n}{d}\right)^{m} \prod_{p d \mid n, p \in \mathrm{P}}\left(1-p^{-m}\right) .
$$

5 Conclusion

We have stepwise determined the orbits on the ring Z_{n}^{m} with respect to the action of the group $\operatorname{SL}\left(m, \mathrm{Z}_{n}\right)$. First, we proceeded in the same way as Kirillov in [9] and we obtained the orbits in the case of n prime number. In this case there are only two orbits, the first is one-point orbit formed by the zero element and the second is formed by all nonzero elements. The next step was the case of $n=p^{k}$ power of prime. There we found $k+1$ orbits characterized by the greatest common divisor of their elements and number n. Finally the orbits for an arbitrary natural number n were found. Our results are summarized in Theorem 4.9.

6 Acknowledgments

We would like to thank Prof. Jiří Tolar, Prof. Miloslav Havlíček and Doc. Edita Pelantová for numerous stimulating and inquisitive discussions.

References

[1] Šłovíček, P., Tolar, J.: "Quantum Mechanics in a Discrete Space-Time." Rep. Math. Phys. Vol. 20 (1984), p. 157-170.
[2] Vourdas, A.: "Quantum Systems with Finite Hilbert Space." Rep. Progr. Phys. Vol. 67 (2004), p. 267-320.
[3] Patera, J., Zassenhaus, H.: The Pauli Matrices in n Dimensions and Finest Gradings of Simple Lie Algebras of Type $\mathrm{A}_{\mathrm{n}-1}$. ." J. Math. Phys. Vol. 29 (1988), p. 665-673.
[4] Gell-Mann, M.: "Symmetries of Baryons and Mesons." Phys. Rev. Vol. 125 (1962), p. 1067.
[5] Havliček, M., Patera, J., Pelantová, E., Tolar, J.: "The Fine Gradings of $\mathrm{sl}(3, \mathrm{C})$ and Their Symmetries," in

Proc. of XXIII. International Colloquium on Group Theoretical Methods in Physics, eds. A. N. Sissakian, G. S. Pogosyan and L. G. Mardoyan, JINR, Dubna, Vol. 1 (2002), p. 57-61.
[6] Havlíček, M., Patera, J., Pelantová, E., Tolar, J.: "Automorphisms of the Fine Grading of $\mathrm{sl}(n, \mathrm{C})$ Associated with the Generalized Pauli Matrices." J. Math. Phys. Vol. 43, 2002, p. 1083-1094.
[7] de Montigny, M., Patera, J.: "Discrete and Continuous Graded Contractions of Lie Algebras and Superalgebras." J. Phys. A: Math. Gen., Vol. 24 (1991), p. 525-547.
[8] Hrivnák, J.: "Solution of Contraction Equations for the Pauli Grading of sl(3, C)." Diploma Thesis, Czech Technical University, Prague 2003.
[9] Kirillov, A. A.: Elements of the Theory of Representations, Springer, New York 1976.
[10] You Hong, Gao You: "Computation of Orders of Classical Groups over Finite Commutative Rings." Chinese Science Bulletin, Vol. 39 (1994), No. 14, p. 1150-1154.
[11] Drápal, A.: Group Theory - Fundamental Aspects (in Czech), Karolinum, Praha 2000.
[12] Schulte, J.: "Über die Jordanische Verallgemeinerung der Eulerschen Funktion." Resultate der Mathematik, Vol. 36 (1999), p. 354-364.
[13] Graham, R. L., Kmoth, D. E., Patashnik, O.: Concrete Mathematics, Addison-Wesley, Reading, MA, 1994.

Ing. Petr Novotný
phone: +420 222311333
fujtajflik@seznam.cz
Ing. Jiří Hrivnák
phone: +420 222311333
hrivnak@post.cz
Department of Physics
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering Břehová 7
11519 Prague 1, Czech Republic

