3 research outputs found
Development of Technology of Superconducting Multilevel Wiring in Speed GaAs Structures of LSI/VLSI
Technological aspects of the use of superconducting materials are considered and the possibility of making targets for magnetron deposition of films for the formation of cryoconductive wiring in GaAs-based LSI-structures is shown. The technological methods and regimes are determined and high-performance technology of cryoalloys making based on Al, Nb, V with Si, Ge and rare-earth metal admixtures and magnetron formation of superconducting films from aluminum, niobium and vanadium alloys are developed. In particular, technological regimes (ion current, accelerating voltage, deposition rate, plasma composition, uniformity of components per silicon substrate diameter) have been established, which provide a thickness of films at the level of 0.6-1 μm. Insignificant thermomechanical stresses (about 1 kg/cm2) and small grain size (~ 10 nm) will allow for excellent adhesion of deposited films and formation of a topological pattern of submicron sizes using photolithography.The parameters and characteristics of the Schottky field GaAs transistors on homo- and heterostructures (Schottky barrier height 0.75-0.8 eV, non-ideality factor 1.2-2, breakdown voltage of Schottky barrier 15-30 V) are explored and methods for increasing the speed of the LSI-structures are defined. It is shown that increasing the speed of LSI/VLSI-structures on gallium arsenide is achieved by using thermostable cryomaterials as gate electrodes, conductors and contacts of source-drain regions of the Schottky field-effect transistors
Features of Formation of Microwave GaAs Structures on Homo and Hetero-transitions for the Sub-microconnection of the Lsic Structures
The features of the formation of microwave GaAs structures are considered and a set of studies is carried out to create a serial technology of large-scale integrated circuit structures (LSIC), including the number of microwaves on GaAs epitaxial layers deposited on monosilicon substrates.The conditions for the formation of a two-dimensional electron gas in hetero-structures with the determination of electron mobility depending on the orientation of the surface were investigated. For hetero-structures on the surface of a semi-insulated GaAs substrate rotated from the plane (100) at an angle of 6–10º with oxygen content on the initial surface С0=10–50 % relative to the gallium peak of the Auger spectrum, a strong mobility anisotropy was found due to an increase in the angle of reorientation and incomplete annealing of carbon from the initial surface of the GaAs substrate.For the deposited layers of gallium arsenide on monosilicon substrates epitaxial technology is used, which can significantly improve the purity of the obtained material, namely, significantly reduce the level of oxygen and carbon isoconcentration impurities, which strongly affect the charge state of the interface.For the formation of structural layers on GaAs, the technology for the formation of nitride layers of Si3N4, AlN, BN by the magnetron method at low substrate temperatures and a given stoichiometry was developed and investigated. The combination of gallium epitaxial nano-silicon arsenide technology to silicon substrates became realistically possible only with the development of technology of magnetron precipitated buffer layers of germanium.The technology of the formation of logical elements NOT, OR-NOT, AND-NOT of high speed with low threshold voltage is developed, which allows to build high-speed chips of combination and sequential types on complementary structure