13 research outputs found

    Protein profile of Acidithiobacillus ferrooxidans strains exhibiting different levels of tolerance to metal sulfates

    No full text
    Strains of Acidithiobacillus ferrooxidans exhibited differences in the inhibition of Fe(2+) oxidation in the presence of 250 mm of cadmium, zinc, and manganese sulfates in respirometric assays. Strains LR and I35 were practically not inhibited, whereas strains SSP and V3 showed significant inhibition (30-70%). Analysis by SDS-PAGE of total proteins from cells grown in the absence of metal sulfates showed different profiles between the more tolerant strains (LR and 135) and the more susceptible ones (SSP and V3). Total proteins of strains LR and V3 were also resolved by two-dimensional polyacrylamide gel electrophoresis (2-DE). A set of major proteins (40, 32, 22, and 20 kDa) could be identified only in the more tolerant strain LR. Our results show that protein profiles analysis could differentiate A. ferrooxidans strains that considerably differ in the tolerance to metal sulfates and present low genomic similarity as revealed by Random Amplified Polymorphic DNA (RAPD) data obtained previously in our laboratory.47649249

    Protein profile of Acidithiobacillus ferrooxidans strains exhibiting different levels of tolerance to metal sulfates

    No full text
    Strains of Acidithiobacillus ferrooxidans exhibited differences in the inhibition of Fe(2+) oxidation in the presence of 250 mm of cadmium, zinc, and manganese sulfates in respirometric assays. Strains LR and I35 were practically not inhibited, whereas strains SSP and V3 showed significant inhibition (30-70%). Analysis by SDS-PAGE of total proteins from cells grown in the absence of metal sulfates showed different profiles between the more tolerant strains (LR and 135) and the more susceptible ones (SSP and V3). Total proteins of strains LR and V3 were also resolved by two-dimensional polyacrylamide gel electrophoresis (2-DE). A set of major proteins (40, 32, 22, and 20 kDa) could be identified only in the more tolerant strain LR. Our results show that protein profiles analysis could differentiate A. ferrooxidans strains that considerably differ in the tolerance to metal sulfates and present low genomic similarity as revealed by Random Amplified Polymorphic DNA (RAPD) data obtained previously in our laboratory

    RAPD genomic fingerprinting differentiates Thiobacillus ferrooxidans strains

    No full text
    The PCR-based technique, involving the random amplification of polymorphic DNA (RAPD), was optimized and used for assessing genomic variability among eight Thiobacillus ferrooxidans strains. RAPD fingerprints presented variation for the thirty primers used, giving a total of 269 polymorphic bands. Similarity coefficients between the strains were calculated, and UPGMA cluster analysis was used to generate a dendrogram showing relationships among them. Most primers divided T. ferrooxidans strains in two distinct groups - Group 1: S, SSP, V3, AMF and Group 2: CMV, FG-460, I-35, LR. We observed that the T. ferrooxidans strains used in this work have a high degree of genomic diversity and that RAPD is a powerful method to differentiate them.191919

    RAPD genomic fingerprinting differentiates Thiobacillus ferrooxidans strains

    No full text
    The PCR-based technique, involving the random amplification of polymorphic DNA (RAPD), was optimized and used for assessing genomic variability among eight Thiobacillus ferrooxidans strains. RAPD fingerprints presented variation for the thirty primers used, giving a total of 269 polymorphic bands. Similarity coefficients between the strains were calculated, and UPGMA cluster analysis was used to generate a dendrogram showing relationships among them. Most primers divided T. ferrooxidans strains in two distinct groups - Group 1: S, SSP, V3, AMF and Group 2: CMV, FG-460, I-35, LR. We observed that the T. ferrooxidans strains used in this work have a high degree of genomic diversity and that RAPD is a powerful method to differentiate them

    Differential proteomic analysis of Acidithiobacillus ferrooxidans cells maintained in contact with bornite or chalcopyrite: Proteins involved with the early bacterial response

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Acidithiobacillus ferrooxidans is a chemoautotrophic bacterium capable of oxidizing ferrous iron or sulfides to obtain energy. Bornite and chalcopyrite are copper sulfides containing iron that present different susceptibilities to the bioleaching process. Here, the early bacterial response to these minerals was investigated using a differential proteomic approach. The protein profiles of cells kept in contact with bornite or chalcopyrite for 24 or 48 h were compared to that of cells not exposed to the minerals. Response to bornite exposure involved thirteen proteins, mainly related to energy metabolism, detoxification and protein synthesis. We detected increases in the expression levels of the proteins chaperonin, antioxidant and aldehyde dehydrogenase, as well as decreases in the expression levels of the proteins radical SAM domain, fructose-1,6-bisphosphatase, PfkB domain, heat shock HslVU. ribulose bisphosphate carboxylase and ribosomal proteins. Chalcopyrite contact led to a distinct metabolic response of the bacterium, since no significant alteration in the level of protein expression was detected. These findings could help to understand the metabolic impact in A. ferrooxidans after the initial addition of the cells to bornite or chalcopyrite during bioleaching processes. (C) 2010 Elsevier Ltd. All rights reserved.463770776Vale (Brazil)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)ProteoRed for the proteomics networkConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Gene expression modulation by chalcopyrite and bornite in Acidithiobacillus ferrooxidans

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Acidithiobacillus ferrooxidans is a mesophilic, acidophilic, chemolithoautotrophic bacterium that obtains energy from the oxidation of ferrous iron (Fe(2+)), elemental sulfur and reduced sulfur compounds. The industrial interest in A. ferrooxidans resides in its capacity to oxidize insoluble metal sulfides into soluble metal sulfates, thus allowing the recovery of the desired metals from low-grade sulfide ores. In the present work, RNA arbitrarily primed PCR (RAP-PCR) was performed to identify cDNAs differentially expressed in A. ferrooxidans cells grown in the presence of Fe(2+) and cells maintained for 24 h in the presence of the copper sulfides bornite and chalcopyrite. Eighteen cDNAs corresponding to genes with known function were identified, and their relative expression was further characterized by real-time quantitative PCR. Bornite had a mild effect on the expression of the 18 genes analyzed. None of these genes was down-regulated and among the few genes up-regulated, it is worth mentioning lepA and def-2 that are involved in protein synthesis. Chalcopyrite presented the most significant changes. Five genes related to protein processing were down-regulated, and another 5 genes related to the transport system were up-regulated. The up- and down-regulation of these genes in the presence of bornite and chalcopyrite could be due to alterations in the ideal pH, presence of copper ions in solution and nutrient limitation. The results suggest that gene expression modulation might be important for the A. ferrooxidans early response to copper sulfides.1927531540Companhia ValeCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundacao de Apoio a CienciaTecnologia e Educacao (FACTE)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation

    No full text
    Respirometric experiments demonstrated that the oxygen uptake by Thiobacillus ferrooxidans strain LR was not inhibited in the presence of 200 mM copper. Copper-treated and untreated cells from this T. ferrooxidans strain were used in growth experiments in the presence of cadmium, copper, nickel and zinc. Growth in the presence of copper was improved by the copper-treated cells. However, no growth was observed for these cells, within 190 h of culture, when cadmium, nickel and zinc were added to the media. Changes in the total protein synthesis pattern were detected by two-dimensional polyacrylamide gel electrophoresis for T. ferrooxidans LR cells grown in the presence of different heavy metals. Specific proteins were induced by copper (16, 28 and 42 kDa) and cadmium (66 kDa), whereas proteins that had their synthesis repressed were observed for all the heavy metals tested. Protein induction was also observed in the cytosolic and membrane fractions from T. ferrooxidans LR cells grown in the presence of copper. The level of protein phosphorylation was increased in the presence of this metal

    Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation

    No full text
    Respirometric experiments demonstrated that the oxygen uptake by Thiobacillus ferrooxidans strain LR was not inhibited in the presence of 200 mM copper. Copper-treated and untreated cells from this T. ferrooxidans strain were used in growth experiments in the presence of cadmium, copper, nickel and zinc. Growth in the presence of copper was improved by the copper-treated cells. However, no growth was observed for these cells, within 190 h of culture, when cadmium, nickel and zinc were added to the media. Changes in the total protein synthesis pattern were detected by two-dimensional polyacrylamide gel electrophoresis for T. ferrooxidans LR cells grown in the presence of different heavy metals. Specific proteins were induced by copper (16, 28 and 42 kDa) and cadmium (66 kDa), whereas proteins that had their synthesis repressed were observed for all the heavy metals tested. Protein induction was also observed in the cytosolic and membrane fractions from T. ferrooxidans LR cells grown in the presence of copper. The level of protein phosphorylation was increased in the presence of this metal.77218719

    Differentiation of Acidithiobacillus ferrooxidans and A-thiooxidans strains based on 16S-23S rDNA spacer polymorphism analysis

    No full text
    Restriction fragment length polymorphism (RFLP) and sequence analyses of the PCR-amplified 16S-23S rDNA intergenic spacer (ITS) were used for differentiating Acidithiobacillus thiooxidans strains from other related acidithiobacilli, including A. ferrooxidans and A. caldus. RFLP fingerprints obtained with AluI, DdeI, HaeIII, HinfI and MspI enabled the differentiation of all Acidithiobacillus reference strains into species groups. The A. thiooxidans strains investigated (metal mine isolates) yielded identical RFLP patterns to the A. thiooxidans type strain (ATCC 19377(T)), except for strain DAMS, which had a distinct pattern for all enzymes tested. Fourteen A. ferrooxidans mine strains were assigned to 3 RFLP groups, the majority of which were grouped with A. ferrooxidans ATCC 23270(T). The spacer region of one representative strain from each of the RFLP groups obtained was subjected to sequence analysis, in addition to eleven additional A. thiooxidans strains isolated from sediment and water samples, and A. caldus DSM 8584(T). The tRNA(IIe) and tRNA(Ala) genes, present in all strains analyzed, showed high sequence similarity. Phylogenetic analysis of the ITS sequences differentiated all three Acidithiobacillus species. Inter- and infraspecific genetic variations detected were mainly due to the size and sequence polymorphism of the ITS3 region. Mantel tests showed no significant correlation between ITS sequence similarity and the geographical origin of strains. The results showed that the 16S-23S rDNA spacer region is a useful target for the development of molecular-based methods aimed at the detection, rapid differentiation and identification of acidithiobacilli. (C) 2004 Elsevier SAS. All rights reserved.155755956
    corecore