436 research outputs found

    Signatures of topology in ballistic bulk transport of HgTe quantum wells

    Full text link
    We calculate bulk transport properties of two-dimensional topological insulators based on HgTe quantum wells in the ballistic regime. Interestingly, we find that the conductance and the shot noise are distinctively different for the so-called normal regime (the topologically trivial case) and the so-called inverted regime (the topologically non-trivial case). Thus, it is possible to verify the topological order of a two-dimensional topological insulator not only via observable edge properties but also via observable bulk properties. This is important because we show that under certain conditions the bulk contribution can dominate the edge contribution which makes it essential to fully understand the former for the interpretation of future experiments in clean samples.Comment: 5 pages, 4 figure

    Finite-difference methods for simulation models incorporating non-conservative forces

    Full text link
    We discuss algorithms applicable to the numerical solution of second-order ordinary differential equations by finite-differences. We make particular reference to the solution of the dissipative particle dynamics fluid model, and present extensive results comparing one of the algorithms discussed with the standard method of solution. These results show the successful modeling of phase separation and surface tension in a binary immiscible fluid mixture.Comment: 27 pages RevTeX, 9 figures, J. Chem. Phys. (in press

    Tunable quantum spin Hall effect in double quantum wells

    Full text link
    The field of topological insulators (TIs) is rapidly growing. Concerning possible applications, the search for materials with an easily controllable TI phase is a key issue. The quantum spin Hall effect, characterized by a single pair of helical edge modes protected by time-reversal symmetry, has been demonstrated in HgTe-based quantum wells (QWs) with an inverted bandgap. We analyze the topological properties of a generically coupled HgTe-based double QW (DQW) and show how in such a system a TI phase can be driven by an inter-layer bias voltage, even when the individual layers are non-inverted. We argue, that this system allows for similar (layer-)pseudospin based physics as in bilayer graphene but with the crucial absence of a valley degeneracy.Comment: 9 pages, 8 figures, extended version (accepted Phys. Rev. B

    Fraunhofer pattern in the presence of Majorana zero modes

    Full text link
    Majorana bound states (MBSs) emerge as zero energy excitations in topological superconductors. At zero temperature, their presence gives a quantized conductance in NS junctions and a fractional Josephson effect in Josephson junctions when the parity is conserved. However, most of current experiments deviate from the theoretical predictions, yielding for example a non-quantized conductance or the absence of only few odd Shapiro steps. Although these results might be compatible with a topological ground state, it is also possible that a trivial scenario can mimic similar results, by means of accidental zero energy Andreev bound states (ZEABS) or simply by non-adiabatic transitions between trivial Andreev bound states. Here, we propose a new platform to investigate signatures of the presence of MBSs in the Fraunhofer pattern of Josephson junctions featuring quantum spin Hall edge states on the normal part and Majorana bound states at the NS interfaces. We use a tight-binding model to demonstrate a change in periodicity of the Fraunhofer pattern when comparing trivial and non-trivial regimes. We explain these results in terms of local and crossed Andreev bound states, which due to the spin-momentum locking, accumulate different magnetic flux and therefore become distinguishable in the Fraunhofer periodicity. Furthermore, we introduce a scattering model that captures the main results of the microscopic calculations with MBSs and extend our discussion to the main differences found using accidental ZEABS.Comment: 17 pages, 14 figures. Comments are welcom

    Fine structure of "zero-mode" Landau levels in HgTe/HgCdTe quantum wells

    Full text link
    HgTe/HgCdTe quantum wells with the inverted band structure have been probed using far infrared magneto-spectroscopy. Realistic calculations of Landau level diagrams have been performed to identify the observed transitions. Investigations have been greatly focused on the magnetic field dependence of the peculiar pair of "zero-mode" Landau levels which characteristically split from the upper conduction and bottom valence bands, and merge under the applied magnetic field. The observed avoided crossing of these levels is tentatively attributed to the bulk inversion asymmetry of zinc blend compounds.Comment: 5 pages, 4 figure

    Magnetotransport in Double Quantum Well with Inverted Energy Spectrum: HgTe/CdHgTe

    Full text link
    We present the first experimental study of the double-quantum-well (DQW) system made of 2D layers with inverted energy band spectrum: HgTe. The magnetotransport reveals a considerably larger overlap of the conduction and valence subbands than in known HgTe single quantum wells (QW), which may be regulated by an applied gate voltage VgV_g. This large overlap manifests itself in a much higher critical field BcB_c separating the range above it where the quantum peculiarities shift linearly with VgV_g and the range below with a complicated behavior. In the latter case the NN-shaped and double-NN-shaped structures in the Hall magnetoresistance ρxy(B)\rho_{xy}(B) are observed with their scale in field pronouncedly enlarged as compared to the pictures observed in an analogous single QW. The coexisting electrons and holes were found in the whole investigated range of positive and negative VgV_g as revealed from fits to the low-field NN-shaped ρxy(B)\rho_{xy}(B) and from the Fourier analysis of oscillations in ρxx(B)\rho_{xx}(B). A peculiar feature here is that the found electron density nn remains almost constant in the whole range of investigated VgV_g while the hole density pp drops down from the value a factor of 6 larger than nn at extreme negative VgV_g to almost zero at extreme positive VgV_g passing through the charge neutrality point. We show that this difference between nn and pp stems from an order of magnitude larger density of states for holes in the lateral valence band maxima than for electrons in the conduction band minimum. We interpret the observed reentrant sign-alternating ρxy(B)\rho_{xy}(B) between electronic and hole conductivities and its zero resistivity state in the quantum Hall range of fields on the basis of a calculated picture of magnetic levels in a DQW.Comment: 15 pages, 13 figure
    corecore