16 research outputs found

    Spiral diffusion of rotating self-propellers with stochastic perturbation

    Get PDF
    Translationally diffusive behavior arising from the combination of orientational diffusion and powered motion at microscopic scales is a known phenomenon, but the peculiarities of the evolution of expected position conditioned on initial position and orientation have been neglected. A theory is given of the spiral motion of the mean trajectory depending upon propulsion speed, angular velocity, orientational diffusion and rate of random chirality reversal. We demonstrate the experimental accessibility of this effect using both tadpole-like and Janus sphere dimer rotating motors. Sensitivity of the mean trajectory to the kinematic parameters suggest that it may be a useful way to determine those parameters

    Multigear Bubble Propulsion of Transient Micromotors

    No full text
    Transient, chemically powered micromotors are promising biocompatible engines for microrobots. We propose a framework to investigate in detail the dynamics and the underlying mechanisms of bubble propulsion for transient chemically powered micromotors. Our observations on the variations of the micromotor active material and geometry over its lifetime, from initial activation to the final inactive state, indicate different bubble growth and ejection mechanisms that occur stochastically, resulting in time-varying micromotor velocity. We identify three processes of bubble growth and ejection, and in analogy with macroscopic multigear machines, we call each process a gear. Gear 1 refers to bubbles that grow on the micromotor surface before detachment while in Gear 2 bubbles hop out of the micromotor. Gear 3 is similar in nature to Gear 2, but the bubbles are too small to contribute to micromotor motion. We study the characteristics of these gears in terms of bubble size and ejection time, and how they contribute to micromotor displacement. The ability to tailor the shell polarity and hence the bubble growth and ejection and the surrounding fluid flow is demonstrated. Such understanding of the complex multigear bubble propulsion of transient chemical micromotors should guide their future design principles and serve for fine tuning the performance of these micromotors

    Geometrical Performance of Self-Phoretic Colloids and Microswimmers

    No full text
    corecore