45 research outputs found

    The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in <i>Sorghum bicolor</i> contains its co-expressed vacuolar MATE transporter

    Get PDF
    Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, encoding a transporter of the multidrug and toxic compound extrusion (MATE) family, which is co-expressed with the biosynthetic genes. The predicted localisation of SbMATE2 to the vacuolar membrane was demonstrated experimentally by transient expression of a SbMATE2-YFP fusion protein and confocal microscopy. Transport studies in Xenopus laevis oocytes demonstrate that SbMATE2 is able to transport dhurrin. In addition, SbMATE2 was able to transport non-endogenous cyanogenic glucosides, but not the anthocyanin cyanidin 3-O-glucoside or the glucosinolate indol-3-yl-methyl glucosinolate. The genomic co-localisation of a transporter gene with the biosynthetic genes producing the transported compound is discussed in relation to the role self-toxicity of chemical defence compounds may play in the formation of gene clusters

    Design and direct assembly of synthesized uracil-containing non-clonal DNA fragments into vectors by USER<sup>TM</sup> cloning

    Get PDF
    This protocol describes how to order and directly assemble uracil-containing non-clonal DNA fragments by uracil excision based cloning (USER cloning). The protocol was generated with the goal of making synthesized non-clonal DNA fragments directly compatible with USER(TM) cloning. The protocol is highly efficient and would be compatible with uracil-containing non-clonal DNA fragments obtained from any synthesizing company. The protocol drastically reduces time and handling between receiving the synthesized DNA fragments and transforming with vector and DNA fragment(s)

    Origin and evolution of transporter substrate specificity within the NPF family

    Get PDF
    Despite vast diversity in metabolites and the matching substrate specificity of their transporters, little is known about how evolution of transporter substrate specificities is linked to emergence of substrates via evolution of biosynthetic pathways. Transporter specificity towards the recently evolved glucosinolates characteristic of Brassicales is shown to evolve prior to emergence of glucosinolate biosynthesis. Furthermore, we show that glucosinolate transporters belonging to the ubiquitous NRT1/PTR FAMILY (NPF) likely evolved from transporters of the ancestral cyanogenic glucosides found across more than 2500 species outside of the Brassicales. Biochemical characterization of orthologs along the phylogenetic lineage from cassava to A. thaliana, suggests that alterations in the electrogenicity of the transporters accompanied changes in substrate specificity. Linking the evolutionary path of transporter substrate specificities to that of the biosynthetic pathways, exemplify how transporter substrate specificities originate and evolve as new biosynthesis pathways emerge

    The <i>Arabidopsis</i> NPF3 protein is a GA transporter

    No full text
    Gibberellins (GAs) are plant hormones that promote a wide range of developmental processes. While GA signalling is well understood, little is known about how GA is transported or how GA distribution is regulated. Here we utilize fluorescently labelled GAs (GA-Fl) to screen for Arabidopsis mutants deficient in GA transport. We show that the NPF3 transporter efficiently transports GA across cell membranes in vitro and GA-Fl in vivo. NPF3 is expressed in root endodermis and repressed by GA. NPF3 is targeted to the plasma membrane and subject to rapid BFA-dependent recycling. We show that abscisic acid (ABA), an antagonist of GA, is also transported by NPF3 in vitro. ABA promotes NPF3 expression and GA-Fl uptake in plants. On the basis of these results, we propose that GA distribution and activity in Arabidopsis is partly regulated by NPF3 acting as an influx carrier and that GA–ABA interaction may occur at the level of transport

    A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport

    Get PDF
    Transport of signaling molecules is of major importance for regulating plant growth, development, and responses to the environment. A prime example is the spatial- distribution of auxin, which is regulated via transporters to govern developmental patterning. A critical limitation in our ability to identify transporters by forward genetic screens is their potential functional redundancy. Here, we overcome part of this functional redundancy via a transportome, multi-targeted forward-genetic screen using artificial-microRNAs (amiRNAs). We generate a library of 3000 plant lines expressing 1777 amiRNAs, designed to target closely homologous genes within subclades of transporter families and identify, genotype and quantitatively phenotype, 80 lines showing reproducible shoot growth phenotypes. Within this population, we discover and characterize a strong redundant role for the unstudied ABCB6 and ABCB20 genes in auxin transport and response. The unique multi-targeted lines generated in this study could serve as a genetic resource that is expected to reveal additional transporters
    corecore