3 research outputs found

    Adhesive ability and biofilm metabolic activity of Listeria monocytogenes strains before and after cold stress

    Get PDF
    Listeria monocytogenes is an important pathogen responsible for major outbreaks associated with food products. Adhesion to surfaces leads to significant modifications in cell physiology. In this work, the ability of L. monocytogenes to produce biofilm and its ability to adhere to abiotic surfaces under cold stress were evaluated. Metabolic activity of biofilm formed by L. monocytogenes before and after cold stress was measured in vitro using the colorimetric method based on the reduction of the tetrazolium salt 2,3-bis(2methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT). The ability to adhere to abiotic surfaces was determined by the ability of the cells to metabolically reduce bromure de 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) to a formazan dye. Our results show that L. monocytogenes strains were able to adhere to abiotic materials with different degrees. In fact, cold stressed strains (-20°C) were more adhesive to polyethylene, glass, polyvinyl chloride and stainless style surfaces than non-stressed cells. Our observations show that the hydrophily varied with cold stress period. At freezing temperature, L. monocytogenes was strongly hydrophobic. Genetic studies of adhesive genes of L. monocytogenes will be required to fully understand the importance of this observation.Keywords: Listeria monocytogenes, slime production, cold stress, abiotic-surfaces, biofilm formatio

    Multifunctional Derivatives of Spiropyrrolidine Tethered Indeno-Quinoxaline Heterocyclic Hybrids as Potent Antimicrobial, Antioxidant and Antidiabetic Agents: Design, Synthesis, In Vitro and In Silico Approaches

    No full text
    To combat emerging antimicrobial-resistant microbes, there is an urgent need to develop new antimicrobials with better therapeutic profiles. For this, a series of 13 new spiropyrrolidine derivatives were designed, synthesized, characterized and evaluated for their in vitro antimicrobial, antioxidant and antidiabetic potential. Antimicrobial results revealed that the designed compounds displayed good activity against clinical isolated strains, with 5d being the most potent (MIC 3.95 mM against Staphylococcus aureus ATCC 25923) compared to tetracycline (MIC 576.01 mM). The antioxidant activity was assessed by trapping DPPH, ABTS and FRAP assays. The results suggest remarkable antioxidant potential of all synthesized compounds, particularly 5c, exhibiting the strongest activity with IC50 of 3.26 ± 0.32 mM (DPPH), 7.03 ± 0.07 mM (ABTS) and 3.69 ± 0.72 mM (FRAP). Tested for their α-amylase inhibitory effect, the examined analogues display a variable degree of α-amylase activity with IC50 ranging between 0.55 ± 0.38 mM and 2.19 ± 0.23 mM compared to acarbose (IC50 1.19 ± 0.02 mM), with the most active compounds being 5d, followed by 5c and 5j, affording IC50 of 0.55 ± 0.38 mM, 0.92 ± 0.10 mM, and 0.95 ± 0.14 mM, respectively. Preliminary structure–activity relationships revealed the importance of such substituents in enhancing the activity. Furthermore, the ADME screening test was applied to optimize the physicochemical properties and determine their drug-like characteristics. Binding interactions and stability between ligands and active residues of the investigated enzymes were confirmed through molecular docking and dynamic simulation study. These findings provided guidance for further developing leading new spiropyrrolidine scaffolds with improved dual antimicrobial and antidiabetic activities
    corecore