5 research outputs found

    Fucoidan and Alginate from the Brown Algae <i>Colpomenia sinuosa</i> and Their Combination with Vitamin C Trigger Apoptosis in Colon Cancer

    No full text
    Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value (618.9 ”g/mL−1) lower than that of alginate (690 ”g/mL−1). The production of reactive oxygen species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest that these compounds may trigger cell death via oxidative damage. The combination of fucoidan with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together, these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising anticancer compounds, particularly when used in combination with vitamin C

    Extracted and depolymerized alginates from brown algae Sargassum vulgare of Lebanese origin: chemical, rheological, and antioxidant properties

    No full text
    International audiencePurified sodium alginate (PS alginate) was isolated from the brown seaweed Sargassum vulgare collected from the Lebanese Mediterranean coast and then depolymerized into homopolymeric polyguluronate (PolyG) and polymannuronate (PolyM) blocks by controlled acid hydrolysis. These fractions of PS alginate issued from S. vulgare were characterized in terms of composition and structure by SEC, elemental analysis, FTIR and 1H and 13C NMR spectroscopy. An alginate with a low content of protein (\textless0.62 %) and a molecular weight of 110 200 g mol-1 was identified as sole polysaccharide. Depolymerized PS alginate fractions, PolyG (32.6 %) and PolyM (22.3 %), were found to have close molecular weights, of 7500 and 6900 g mol-1, respectively. From NMR analysis, values of F G, F M, M/G ratio, F GG, F MM, and F GM (or F MG) blocks were determined and compared with those of alginates from S. vulgare of Brazilian origin and other Sargassum species. Our PS alginate appeared different from the Brazilian S. vulgare alginate, with a lower M/G ratio (0.785 instead of 1.27), a predominance of the G blocks (F G and F GG \textgreater 0.5) instead of the M blocks, and it showed more similarity to the composition of some alginates extracted from other species of Sargassum. High G or M contents (≄80 %) were measured from PolyG and PolyM blocks, respectively. The viscosity of the PS alginate and its fractions PolyG and PolyM was determined. PS alginate from S. vulgare of Lebanese origin showed a Newtonian flow behavior for concentration lower than 0.5 % in 0.1 M NaCl solution, while a shear-thinning pseudoplastic behavior is observed for concentration range between 0.75 and 10 %. Also, storage (Gâ€Č) and loss (G″) moduli were studied for two concentrations of PS alginate solutions (5 and 10 %). Antioxidant properties of the non-depolymerized and depolymerized alginates were evaluated by determining the scavenging ability of the stable radical DPPH (2,2-diphenyl-1 picrylhydrazyl). Clearly, the results demonstrated differences in radical scavenging efficacy between PolyG and PolyM fractions. The higher hydroxyl radical scavenging activity was observed for the PolyG fractions (~92 % at 2 mg mL-1) and this activity was comparable with those of standard antioxidants. These PolyG fractions could be valuable in foods or pharmaceutical products as alternatives to synthetic antioxidant
    corecore