146 research outputs found

    Lupinosis in sheep. 1. Laboratory studies

    Get PDF
    IN earlier articles by Bennetts (1957, 1960), the clinical and pathological features of lupinosis, as seen in field outbreaks, were described. The suggestion was made that the roughage portion of the lupin plants was responsible for the disease. More recent observations suggest a relationship between parasitism and lupinosis

    Use of insulin to increase epiblast cell number: towards a new approach for improving ESC isolation from human embryos

    Get PDF
    Human embryos donated for embryonic stem cell (ESC) derivation have often been cryopreserved for 5–10 years. As a consequence, many of these embryos have been cultured in media now known to affect embryo viability and the number of ESC progenitor epiblast cells. Historically, these conditions supported only low levels of blastocyst development necessitating their transfer or cryopreservation at the 4–8-cell stage. As such, these embryos are donated at the cleavage stage and require further culture to the blastocyst stage before hESC derivation can be attempted. These are generally of poor quality, and, consequently, the efficiency of hESC derivation is low. Recent work using a mouse model has shown that the culture of embryos from the cleavage stage with insulin to day 6 increases the blastocyst epiblast cell number, which in turn increases the number of pluripotent cells in outgrowths following plating, and results in an increased capacity to give rise to ESCs. These findings suggest that culture with insulin may provide a strategy to improve the efficiency with which hESCs are derived from embryos donated at the cleavage stage.Jared M. Campbell, Michelle Lane, Ivan Vassiliev, and Mark B. Nottl

    Toxic ferns of Western Australia

    Get PDF
    Botanical descriptions and notes on the distribution of six species of ferns are given. These plants contain the enzyme thiaminase, which may induce thiamin deficiency, or other constituents toxic to animals. The clinical signs of both thiamin deficiency and fern toxicity in affected livestock are described

    Development of an improved porcine embryo culture medium for cloning, transgenesis and embryonic stem cell isolation

    Get PDF
    Work in our laboratory for more than two decades has focussed on the production of genetically modified pigs for xeno transplantion research. More recent work has focussed on the isolation of porcine embryonic stem cells to facilitate this as well as and other research applications. Central to this research has been the production of in vitro Produced (IVP) embryos. These embryos are produced using a twostep culture system based on NCSU23. This culture system which was developed by modifying energy substrate availability and concentrations and by adding non-essential and essential amino acids in a sequential manner. As a result of this work we have developed a culture system that better suits the changing metabolic needs of the pig embryo and produces embryos with relatively high developmental competence compared to the original formulation. These embryos can be used for a range of research applications including the isolation of embryonic stem cells.Luke FS Beebe, Stephen M McIlfatrick, Ivan M Vassiliev and Mark B Nottl

    Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9

    Get PDF
    Xenotransplantation from pigs has been advocated as a solution to the perennial shortage of donated human organs and tissues. CRISPR/Cas9 has facilitated the silencing of genes in donor pigs that contribute to xenograft rejection. However, the generation of modified pigs using second-generation nucleases with much lower off-target mutation rates than Cas9, such as FokI-dCas9, has not been reported. Furthermore, there have been no reports on the use of CRISPR to knock protective transgenes into detrimental porcine genes. In this study, we used FokI-dCas9 with two guide RNAs to integrate a 7.1 kilobase pair transgene into exon 9 of the GGTA1 gene in porcine fetal fibroblasts. The modified cells lacked expression of the αGal xenoantigen, and secreted an anti-CD2 monoclonal antibody encoded by the transgene. PCR and sequencing revealed precise integration of the transgene into one allele of GGTA1, and a small deletion in the second allele. The cells were used for somatic cell nuclear transfer to generate healthy male knock-in piglets, which did not express αGal and which contained anti-CD2 in their serum. We have therefore developed a versatile high-fidelity system for knocking transgenes into the pig genome for xenotransplantation purposes.Mark B. Nottle, Evelyn J. Salvaris, Nella Fisicaro, Stephen McIlfatrick, Ivan Vassiliev, Wayne J. Hawthorne, Philip J. O’Connell, Jamie L. Brady, Andrew M. Lew and Peter J. Cowa

    Xenotransplantation transgenesis. Are we there yet?

    Get PDF
    Nottle MB, Hawthorne W, O'Connell PJ, d'Apice AJF, and Cowan P

    Multipotent cell types in primary fibroblast cell lines used to clone pigs using somatic cell nuclear transfer

    Get PDF
    We have previously demonstrated that the use of porcine mesenchymal stem cells (MSCs) isolated from the bone marrow can increase the proportion of somatic cell nuclear transfer (SCNT) embryos that develop to the blastocyst stage compared with adult fibroblasts obtained from the same animal. The aim of the present study was to determine if MSCs are also present in primary cultures of adult fibroblasts which are commonly used for cloning live animals. To do this we chose a primary culture of adult fibroblasts that we had previously used to clone pigs. Single cell clones were isolated using low-density plating. After seven days of culture 63% of colonies displayed typical fibroblast morphology, while the remainder appeared cobblestone-like in appearance. Two of the 57 clones that displayed fibroblast morphology differentiated into adipocytes but not chondrocytes or osteocytes (uni-potent clones). Three of the 33 cobblestone-like clones differentiated into chondrocytes only, while 3 differentiated into adipocytes and chondrocytes but not osteocytes (bi-potent clones). One of the bi-potent cobblestone-like clones was then used for SCNT and in vitro development compared with a fibroblast-like clone which did not differentiate. Both cell types produced blastocysts at similar rates. In conclusion we have identified uni-potent and bi-potent cell types in primary cultures of adult fibroblasts used previously to clone live piglets.Sharon J. Harrison, Luke F.S. Beebe, Ivan Vassiliev, Stephen M. McIlfatrick and Mark B. Nottl

    Effect of cytochalasin types on the production of heterozygous parthenogenetic porcine embryos and the isolation of putative parthenogenetic embryonic stem cells

    Get PDF
    Parthenogenetic embryos have been suggested as an alternative source of embryonic stem cells (ESCs). The present study was undertaken to determine the efficiency with which porcine heterozygous parthenotes could be produced using cytochalasin B (CB) or cytochalasin D (CD) and whether parthenogenetic ESCs (pESCs) could be isolated from these. Cleavage rate was lower and fewer embryos developed to the blastocyst stage in the CB group compared with the CD group. The number of primary outgrowths obtained was also lower in the CB compared with the CD group. No primary lines were isolated from embryonal outgrowths in the CB group. In contrast, primary cell lines were derived from these in the CD group. These lines survived vitrification and warming, resulting in established cell lines, which maintained a characteristic ESC morphology and expressed the pluripotent markers Oct4 and Nanog following repeated passaging. Putative pESC lines could also be directly differentiated to cell types representative of all three germ layers.Ivan Vassiliev, Anders Tsui, Wan Xian Kang, Stephen McIlfatrick and Mark B. Nottl

    Control of IBMIR in Neonatal Porcine Islet Xenotransplantation in Baboons

    Get PDF
    The instant blood-mediated inflammatory reaction (IBMIR) is a major obstacle to the engraftment of intraportal pig islet xenografts in primates. Higher expression of the galactose-α1,3-galactose (αGal) xenoantigen on neonatal islet cell clusters (NICC) than on adult pig islets may provoke a stronger reaction, but this has not been tested in the baboon model. Here, we report that WT pig NICC xenografts triggered profound IBMIR in baboons, with intravascular clotting and graft destruction occurring within hours, which was not prevented by anti-thrombin treatment. In contrast, IBMIR was minimal when recipients were immunosuppressed with a clinically relevant protocol and transplanted with NICC from αGal-deficient pigs transgenic for the human complement regulators CD55 and CD59. These genetically modified (GM) NICC were less susceptible to humoral injury in vitro than WT NICC, inducing significantly less complement activation and thrombin generation when incubated with baboon platelet-poor plasma. Recipients of GM NICC developed a variable anti-pig antibody response, and examination of the grafts 1 month after transplant revealed significant cell-mediated rejection, although scattered insulin-positive cells were still present. Our results indicate that IBMIR can be attenuated in this model, but long-term graft survival may require more effective immunosuppression or further donor genetic modification

    Insulin increases epiblast cell number of in vitro cultured mouse embryos via the PI3K/GSK3/p53 pathway

    Get PDF
    High-quality embryos give rise to embryonic stem cells (ESCs) at greater efficiencies than poor-quality embryos. However, most embryos available for human ESC derivation are of a reduced quality as a result of culture in relatively simple media up to 10 years earlier, before cryopreservation, or before compaction. In the present study, we used a mouse model to determine whether a culture with insulin from the 8-cell stage could increase the number of ESC progenitor epiblast cells in blastocysts, as well as endeavor to determine the molecular mechanism of the insulin's effect. Culture in media containing 1.7 ρM insulin increased epiblast cell number (determined by Oct4 and Nanog co-expression), and proportion in day 6 blastocysts. The inhibition of phosphoinositide 3 kinase (PI3K) (via LY294002), an early second messenger of the insulin receptor, blocked this effect. The inhibition of glycogen synthase kinase 3 (GSK3) or p53, 2 s messengers inactivated by insulin signaling (via CT99021 or pifithrin-α, respectively), increased epiblast cell numbers. When active, GSK3 and p53 block the transcription of Nanog, which is important for maintaining pluripotency. A simultaneous inhibition of GSK3 and p53 had no synergistic effects on epiblast cell number. The induced activation of GSK3 and p53, via the inhibition of proteins responsible for their inactivation (PKA via H-89 and SIRT-1 via nicotinamide, respectively), blocked the insulin's effect on the epiblast.From our findings, we conclude that insulin increases epiblast cell number via the activation of PI3K, which ultimately inactivates GSK3 and p53. Furthermore, we suggest that the inclusion of insulin in culture media could be used as a strategy for increasing the efficiency with which the ESC lines can be derived from cultured embryos.Jared M. Campbell, Mark B. Nottle, Ivan Vassiliev, Megan Mitchell, and Michelle Lan
    corecore