7 research outputs found

    Dynamics And Control Of Foot-And-Mouth Disease In Endemic Countries: A Pair Approximation Model

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jtbi.2014.05.010 © 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Previous mathematical models of spatial farm-to-farm transmission of foot and mouth disease (FMD) have explored the impacts of control measures such as culling and vaccination during a single outbreak in a country normally free of FMD. As a result, these models do not include factors that are relevant to countries where FMD is endemic in some regions, like long-term waning natural and vaccine immunity, use of prophylactic vaccination and disease re-importations. These factors may have implications for disease dynamics and control, yet few models have been developed for FMD-endemic settings. Here we develop and study an SEIRV (susceptible-exposed-infectious-recovered-vaccinated) pair approximation model of FMD. We focus on long term dynamics by exploring characteristics of repeated outbreaks of FMD and their dependence on disease re-importation, loss of natural immunity, and vaccine waning. We find that the effectiveness of ring and prophylactic vaccination strongly depends on duration of natural immunity, rate of vaccine waning, and disease re-introduction rate. However, the number and magnitude of FMD outbreaks are generally more sensitive to the duration of natural immunity than the duration of vaccine immunity. If loss of natural immunity and/or vaccine waning happen rapidly, then multiple epidemic outbreaks result, making it difficult to eliminate the disease. Prophylactic vaccination is more effective than ring vaccination, at the same per capita vaccination rate. Finally, more frequent disease re-importation causes a higher cumulative number of infections, although a lower average epidemic peak. Our analysis demonstrates significant differences between dynamics in FMD-free settings versus FMD-endemic settings, and that dynamics in FMD-endemic settings can vary widely depending on factors such as the duration of natural and vaccine immunity and the rate of disease re-importations. We conclude that more mathematical models tailored to FMD-endemic countries should be developed that include these factors

    Spatially-Implicit Modelling Of Disease-Behaviour Interactions In The Context Of Non-Pharmaceutical Interventions

    Get PDF
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Mathematical Biosciences & Engineering following peer review. The definitive publisher-authenticated version Bauch, C. T., & Ringa, N. (2017). Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions. Mathematical Biosciences and Engineering, 15(2), 461–483 is available online at: https://dx.doi.org/10.3934/mbe.2018021Pair approximation models have been used to study the spread of infectious diseases in spatially distributed host populations, and to explore disease control strategies such as vaccination and case isolation. Here we introduce a pair approximation model of individual uptake of non-pharmaceutical interventions (NPIs) for an acute self-limiting infection, where susceptible individuals can learn the NPIs either from other susceptible individuals who are already practicing NPIs ("social learning"), or their uptake of NPIs can be stimulated by being neighbours of an infectious person ("exposure learning"). NPIs include individual measures such as hand-washing and respiratory etiquette. Individuals can also drop the habit of using NPIs at a certain rate. We derive a spatially defined expression of the basic reproduction number R-0 and we also numerically simulate the model equations. We find that exposure learning is generally more efficient than social learning, since exposure learning generates NPI uptake in the individuals at immediate risk of infection. However, if social learning is pre-emptive, beginning a sufficient amount of time before the epidemic, then it can be more effective than exposure learning. Interestingly, varying the initial number of individuals practicing NPIs does not significantly impact the epidemic final size. Also, if initial source infections are surrounded by protective individuals, there are parameter regimes where increasing the initial number of source infections actually decreases the infection peak (instead of increasing it) and makes it occur sooner. The peak prevalence increases with the rate at which individuals drop the habit of using NPIs, but the response of peak prevalence to changes in the forgetting rate are qualitatively different for the two forms of learning. The pair approximation methodology developed here illustrates how analytical approaches for studying interactions between social processes and disease dynamics in a spatially structured population should be further pursued

    Impacts Of Constrained Culling And Vaccination On Control Of Foot And Mouth Disease In Near-Endemic Settings: A Pair Approximation Model

    Get PDF
    Many countries have eliminated foot and mouth disease (FMD), but outbreaks remain common in other countries. Rapid development of international trade in animals and animal products has increased the risk of disease introduction to FMD-free countries. Most mathematical models of FMD are tailored to settings that are normally disease-free, and few models have explored the impact of constrained control measures in a 'near-endemic' spatially distributed host population subject to frequent FMD re-introductions from nearby endemic wild populations, as characterizes many low-income, resource-limited countries. Here we construct a pair approximation model of FMD and investigate the impact of constraints on total vaccine supply for prophylactic and ring vaccination, and constraints on culling rates and cumulative culls. We incorporate natural immunity waning and vaccine waning, which are important factors for near-endemic populations. We find that, when vaccine supply is sufficiently limited, the optimal approach for minimizing cumulative infections combines rapid deployment of ring vaccination during outbreaks witha contrasting approach of careful rationing of prophylactic vaccination over the year, such that supplies last as long as possible (and with the bulk of vaccines dedicated toward prophylactic vaccination). Thus, for optimal long-term control of the disease by vaccination in near-endemic settings when vaccine supply is limited, it is best to spread out prophylactic vaccination as much as possible. Regardless of culling constraints, the optimal culling strategy is rapid identification of infected premises and their immediate contacts at the initial stages of an outbreak, and rapid culling of infected premises and farms deemed to be at high risk of infection (as opposed to culling only the infected farms). Optimal culling strategies are similar when social impact is the outcome of interest. We conclude that more FMD transmission models should be developed that are specific to the challenges of FMD control in near-endemic, low-income countries

    Understanding the impact of mobility on COVID-19 spread : A hybrid gravitymetapopulation model of COVID-19

    No full text
    The outbreak of the severe acute respiratory syndrome coronavirus 2 started in Wuhan, China, towards the end of 2019 and spread worldwide. The rapid spread of the disease can be attributed to many factors including its high infectiousness and the high rate of human mobility around the world. Although travel/movement restrictions and other non-pharmaceutical interventions aimed at controlling the disease spread were put in place during the early stages of the pandemic, these interventions did not stop COVID-19 spread. To better understand the impact of human mobility on the spread of COVID-19 between regions, we propose a hybrid gravity-metapopulation model of COVID-19. Our modeling framework has the flexibility of determining mobility between regions based on the distances between the regions or using data from mobile devices. In addition, our model explicitly incorporates time-dependent human mobility into the disease transmission rate, and has the potential to incorporate other factors that affect disease transmission such as facemasks, physical distancing, contact rates, etc. An important feature of this modeling framework is its ability to independently assess the contribution of each factor to disease transmission. Using a Bayesian hierarchical modeling framework, we calibrate our model to the weekly reported cases of COVID-19 in thirteen local health areas in Metro Vancouver, British Columbia (BC), Canada, from July 2020 to January 2021. We consider two main scenarios in our model calibration: using a fixed distance matrix and time-dependent weekly mobility matrices. We found that the distance matrix provides a better fit to the data, whilst the mobility matrices have the ability to explain the variance in transmission between regions. This result shows that the mobility data provides more information in terms of disease transmission than the distances between the regions.Medicine, Faculty ofScience, Faculty ofNon UBCMathematics, Department ofPopulation and Public Health (SPPH), School ofReviewedFacultyResearcherGraduat

    Table_1_Visible minority status and occupation were associated with increased COVID-19 infection in Greater Vancouver British Columbia between June and November 2020: an ecological study.DOCX

    No full text
    BackgroundThe COVID-19 pandemic has highlighted health disparities, especially among specific population groups. This study examines the spatial relationship between the proportion of visible minorities (VM), occupation types and COVID-19 infection in the Greater Vancouver region of British Columbia, Canada.MethodsProvincial COVID-19 case data between June 24, 2020, and November 7, 2020, were aggregated by census dissemination area and linked with sociodemographic data from the Canadian 2016 census. Bayesian spatial Poisson regression models were used to examine the association between proportion of visible minorities, occupation types and COVID-19 infection. Models were adjusted for COVID-19 testing rates and other sociodemographic factors. Relative risk (RR) and 95% Credible Intervals (95% CrI) were calculated.ResultsWe found an inverse relationship between the proportion of the Chinese population and risk of COVID-19 infection (RR = 0.98 95% CrI = 0.96, 0.99), whereas an increased risk was observed for the proportions of the South Asian group (RR = 1.10, 95% CrI = 1.08, 1.12), and Other Visible Minority group (RR = 1.06, 95% CrI = 1.04, 1.08). Similarly, a higher proportion of frontline workers (RR = 1.05, 95% CrI = 1.04, 1.07) was associated with higher infection risk compared to non-frontline.ConclusionDespite adjustments for testing, housing, occupation, and other social economic status variables, there is still a substantial association between the proportion of visible minorities, occupation types, and the risk of acquiring COVID-19 infection in British Columbia. This ecological analysis highlights the existing disparities in the burden of diseases among different visible minority populations and occupation types.</p

    Data_Sheet_1_Association between close interpersonal contact and vaccine hesitancy: Findings from a population-based survey in Canada.PDF

    No full text
    BackgroundVaccine hesitancy threatens efforts to bring the coronavirus disease 2019 (COVID-19) pandemic to an end. Given that social or interpersonal contact is an important driver for COVID-19 transmission, understanding the relationship between contact rates and vaccine hesitancy may help identify appropriate targets for strategic intervention. The purpose of this study was to assess the association between interpersonal contact and COVID-19 vaccine hesitancy among a sample of unvaccinated adults in the Canadian province of British Columbia (BC).MethodsUnvaccinated individuals participating in the BC COVID-19 Population Mixing Patterns Survey (BC-Mix) were asked to indicate their level of agreement to the statement, “I plan to get the COVID-19 vaccine.” Multivariable multinomial logistic regression was used to assess the association between self-reported interpersonal contact and vaccine hesitancy, adjusting for age, sex, ethnicity, educational attainment, occupation, household size and region of residence. All analyses incorporated survey sampling weights based on age, sex, geography, and ethnicity.ResultsResults were based on survey responses collected between March 8, 2021 and December 6, 2021, by a total of 4,515 adults aged 18 years and older. Overall, 56.7% of respondents reported that they were willing to get the COVID-19 vaccine, 27.0% were unwilling and 16.3% were undecided. We found a dose-response association between interpersonal contact and vaccine hesitancy. Compared to individuals in the lowest quartile (least contact), those in the fourth quartile (highest contact), third quartile and second quartile groups were more likely to be vaccine hesitant, with adjusted odd ratios (aORs) of 2.85 (95% CI: 2.02, 4.00), 1.91(95% CI: 1.38, 2.64), 1.78 (95% CI: 1.13, 2.82), respectively.ConclusionStudy findings show that among unvaccinated people in BC, vaccine hesitancy is greater among those who have high contact rates, and hence potentially at higher risk of acquiring and transmitting infection. This may also impact future uptake of booster doses.</p
    corecore