34 research outputs found
Associations between empathy, inhibitory control, and physical aggression in toddlerhood
Impaired empathy has been associated with aggression in children, adolescents and adults, but results have been contradictory for the preschool period. Impaired inhibitory control also increases the risk of aggression, and possibly moderates empathy‐aggression associations. The current study investigated whether empathy and inhibitory control are associated with aggression in toddlerhood. Furthermore, we aimed to clarify the role of inhibitory control in empathy and aggression, specifically, whether inhibitory control moderates the association between empathy and aggression. During a laboratory visit at age 30 months (N = 103), maternal reports of physical aggression were obtained and child inhibitory control was examined using a gift delay task. Empathy was examined by obtaining behavioral observations and recording physiological responses (heart rate response and respiratory sinus arrhythmia response) to an empathy‐eliciting event (i.e., simulated distress). Reduced inhibitory control was associated with more aggression. Behavioral and physiological indicators of empathy were not associated with aggression. Hierarchical regression analyses revealed an interaction effect of heart rate response to distress simulation with inhibitory control in the prediction of aggression. Post hoc analyses indicated a negative association between heart rate response and aggression when inhibitory control was high, but a positive association was found in toddlers who demonstrated low inhibitory control. These results suggest that children are less aggressive when they have both high levels of empathy and inhibitory control. Therefore, both empathy and inhibition are important targets for interventions aiming to reduce or prevent aggression at a young age
Infant emotional responses to challenge predict empathic behavior in toddlerhood
Although emotional responses are theorized to be important in the development of empathy, findings regarding the prediction of early empathic behavior by infant behavioral and physiological responses are mixed. This study examined whether behavioral and physiological responses to mild emotional challenge (still face paradigm and car seat task) in 118 infants at age 6 months predicted empathic distress and empathic concern in response to an empathy‐evoking task (i.e, experimenter's distress simulation) at age 20 months. Correlation analyses, corrected for sex and baseline levels of physiological arousal, showed that stronger physiological and behavioral responses to emotional challenge at age 6 months were positively related to observed empathic distress, but not empathic concern, at age 20 months. Linear regression analyses indicated that physiological and behavioral responses to challenge at 6 months independently predicted empathic distress at 20 months, which suggests an important role for both physiological and behavioral emotional responses in empathy development. In addition, curvilinear regression analyses showed quadratic associations between behavioral responses at 6 months, and empathic distress and empathic concern at 20 months, which indicates that moderate levels of behavioral responsivity predict the highest levels of empathic distress and empathic concern
A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days
Climate change is increasingly predisposing polar regions to large landslides. Tsunamigenic landslides have occurred recently in Greenland (Kalaallit Nunaat), but none have been reported from the eastern fjords. In September 2023, we detected the start of a 9-day-long, global 10.88-millihertz (92-second) monochromatic very-long-period (VLP) seismic signal, originating from East Greenland. In this study, we demonstrate how this event started with a glacial thinning–induced rock-ice avalanche of 25 × 106 cubic meters plunging into Dickson Fjord, triggering a 200-meter-high tsunami. Simulations show that the tsunami stabilized into a 7-meter-high long-duration seiche with a frequency (11.45 millihertz) and slow amplitude decay that were nearly identical to the seismic signal. An oscillating, fjord-transverse single force with a maximum amplitude of 5 × 1011 newtons reproduced the seismic amplitudes and their radiation pattern relative to the fjord, demonstrating how a seiche directly caused the 9-day-long seismic signal. Our findings highlight how climate change is causing cascading, hazardous feedbacks between the cryosphere, hydrosphere, and lithosphere.acceptedVersio