19 research outputs found

    Effect of Mercury on Membrane Proteins, Anionic Transport and Cell Morphology in Human Erythrocytes.

    Get PDF
    Mercury (Hg) is a heavy metal widespread in all environmental compartments as one of the most hazardous pollutants. Human exposure to this natural element is detrimental for several cellular types including erythrocytes (RBC) that accumulate Hg mainly bound to the SH groups of different cellular components, including protein cysteine residues. The cellular membrane represents a major target of Hg-induced damage in RBC with loss of physiological phospholipid asymmetry, due to phosphatidylserine (PS) exposure to the external membrane leaflet. To investigate Hg-induced cytotoxicity at the molecular level, the possible interaction of this heavy metal with RBC membrane proteins was investigated. Furthermore, Hg-induced alterations in band 3 protein (B3p) transport function, PS-exposing macrovesicle (MVs) formation and morphological changes were assessed. For this aim, human RBC were treated in vitro with different HgCl <sub>2</sub> concentrations (range 10-40 µM) and the electrophoretic profile of membrane proteins as well as the expression levels of Ankyrin and Flottilin-2 evaluated by SDS-PAGE and Western blot, respectively. The effect of alterations in these proteins on RBC morphology was evaluated by digital holographic microscopy and anionic transport efficiency of B3p was evaluated as sulphate uptake. Finally, PS- bearing MVs were quantified by annexin-V binding using FACS analysis. Findings presented in this paper indicate that RBC exposure to HgCl <sub>2</sub> induces modifications in the electrophoretic profile of membrane protein fraction. Furthermore, our study reveals the Hg induced alterations of specific membrane proteins, such as Ankyrin, a protein essential for membrane-cytoskeleton linkage and Flotillin-2, a major integral protein of RBC lipid rafts, likely responsible for decreased membrane stability and increased fragmentations. Accordingly, under the same experimental conditions, RBC morphological changes and PS-bearing MVs release are observed. Finally, RBC treatment significantly affects the B3p-mediated anionic transport, that we report reduced upon HgCl <sub>2</sub> treatment in a dose dependent manner. Altogether, the findings reported in this paper confirm that RBC are particularly vulnerable to Hg toxic effect and provide new insight in the Hg-induced protein modification in human RBC affecting the complex biological system of cellular membrane. In particular, Hg could induce dismantle of vertical cohesion between the plasma membrane and cytoskeleton as well as destabilization of lateral linkages of functional domains. Consequently, decreased membrane deformability could impair RBC capacity to deal with the shear forces in the circulation increasing membrane fragmentations. Furthermore, findings described in this paper have also significant implication in RBC physiology, particularly related to gas exchanges

    New insights into alterations in pl proteins affecting their binding to dna after exposure of mytilus galloprovincialis to mercury—a possible risk to sperm chromatin structure?

    Get PDF
    Mercury (Hg) is a highly toxic and widespread pollutant. We previously reported that the exposure of Mytilus galloprovincialis for 24 h to doses of HgCl2 similar to those found in seawater (range 1–100 pM) produced alterations in the properties of protamine-like (PL) proteins that rendered them unable to bind and protect DNA from oxidative damage. In the present work, to deepen our studies, we analyzed PL proteins by turbidimetry and fluorescence spectroscopy and performed salt-induced release analyses of these proteins from sperm nuclei after the exposure of mussels to HgCl2 at the same doses. Turbidity assays indicated that mercury, at these doses, induced PL protein aggre-gates, whereas fluorescence spectroscopy measurements showed mercury-induced conformational changes. Indeed, the mobility of the PLII band changed in sodium dodecyl sulphate-polyacrylamide gel electrophoresis, particularly after exposure to 10-pM HgCl2, confirming the mercury-induced structural rearrangement. Finally, exposure to HgCl2 at all doses produced alterations in PL-DNA binding, detectable by DNA absorption spectra after the PL protein addition and by a decreased release of PLII and PLIII from the sperm nuclei. In conclusion, in this paper, we reported Hg-induced PL protein alterations that could adversely affect mussel reproductive activity, providing an insight into the molecular mechanism of Hg-related infertility

    Morphological, Gene, and Hormonal Changes in Gonads and In-Creased Micrococcal Nuclease Accessibility of Sperm Chromatin Induced by Mercury

    Get PDF
    Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three stress genes: mt10, hsp70 and πgst. In this tissue we also evaluated the level of steroidogenic enzymes 3β-HSD and 17β-HSD and the expression of PL protein genes. Finally, we determined difference in sperm chromatin accessibility to micrococcal nuclease. We found alterations in gonadal morphology especially after exposure to 10 and 100 pM HgCl2 and hypo-expression of the three stress genes, particularly for hsp70. Furthermore, decreased labelling with both 3β-HSD and 17β-HSD antibodies was observed following exposure to 1 and 10 pM HgCl2 and complete absence at 100 pM HgCl2 exposure. Gonads of mussels exposed to all HgCl2 doses showed decreased expression of PL protein genes especially for PLIII. Finally, micrococcal nuclease digestions showed that all doses of HgCl2 exposure resulted in increased sperm chromatin accessibility to this enzyme, indicative of improper sperm chromatin structure. All of these changes provide preliminary data of the potential toxicity of mercury on the reproductive health of this mussel

    Spermatozoa transcriptional response and alterations in pl proteins properties after exposure of mytilus galloprovincialis to mercury

    Get PDF
    Mercury (Hg) is an environmental pollutant that impacts human and ecosystem health. In our previous works, we reported alterations in the properties of Mytilus galloprovincialis protamine-like (PL) proteins after 24 h of exposure to subtoxic doses of toxic metals such as copper and cadmium. The present work aims to assess the effects of 24 h of exposure to 1, 10, and 100 pM HgCl2 on spermatozoa and PL proteins of Mytilus galloprovincialis. Inductively coupled plasma–mass spectrometry indicated accumulation of this metal in the gonads of exposed mussels. Further, RT-qPCR analyses showed altered expression levels of spermatozoa mt10 and hsp70 genes. In Mytilus galloprovincialis, PL proteins represent the major basic component of sperm chromatin. These proteins, following exposure of mussels to HgCl2, appeared, by SDS-PAGE, partly as aggregates and showed a decreased DNA-binding capacity that rendered them unable to prevent DNA damage, in the presence of CuCl2 and H2O2 . These results demonstrate that even these doses of HgCl2 exposure could affect the properties of PL proteins and result in adverse effects on the reproductive system of this organism. These analyses could be useful in developing rapid and efficient chromatin-based genotoxicity assays for pollution biomonitoring programs

    hsp70 AS New Cadmium Bioaccumulation Marker to prevent the risks of Mussels Consumption in Human Nutrition

    No full text
    The consumption of seafood has increased in recent years, especially in coastal regions. The consumption of mussels provides proteins, essential minerals and vitamins, and thus, some protection from certain diseases but the risks and benefits of their consumption are still hard to assess because of the metals bioaccumulated from the marine environment, with their toxicity. Mussels accumulate a wide range of metals, included cadmium, in their soft tissue. Cadmium is a heavy metal particularly hazardous for human health and is an important pollutant in estuarine and coastal environments. Thus, the determination of the concentrations of cadmium in mussels is essential because of their usage as seafood and the potential adverse effects of their consumption on human health. In order to identify a quick cadmium bioaccumulation marker usable in monitoring programs, we analyzed the metal content in Mytilus galloprovincialis gill tissues and its relationship with hsp70 expression levels after a laboratory exposure for 24 h to 1,5; 5 and 10 μM CdCl2 in artificial sea water. Inductively coupled plasma-mass spectrometry showed that cadmium content increased in gills tissues in an exposure dose-dependent fashion. RT-qPCR, showed that Cd exposure induced hsp70 increase resulting in 3,1;10 and 12 fold at 1,5; 5, 10 μM, respectively in comparison with unexposed mussels. Finally, hsp70 expression levels correlated with the amount of bioaccumulated cadmium in gill tissue, indicating hsp70 as a potential marker, even if not univocally, of significative cadmium bioaccumulation usable in environmental monitoring programs and for seafood safety

    Hydroxytyrosol decreases phosphatidylserine exposure and inhibits suicidal death induced by lysophosphatidic acid in human erythrocytes

    No full text
    Background/Aims: Lysophosphatidic acid (LPA) is a phospholipid signal molecule that regulates many cellular processes both physiological and pathological. Moreover, its high plasma concentrations are toxic for several cellular types, including erythrocytes (RBC), as it acts as a pro-thrombotic and pro-atherogenic agent. It is therefore essential to explore the potential protective role of nutrition in protecting cells from the possible toxic effects of high plasma concentrations of LPA by testing bioactive nutrients. In particular, our focus was on hydroxytyrosol (HT), a phenolic antioxidant occurring naturally in virgin olive oil, investigating its possible protective effect in preventing LPA-induced programmed cell death (eryptosis) in human RBC. Methods: Intact RBC were incubated in the presence of 2.5 µM LPA and increasing concentrations of HT. Phosphatidylserine (PS) exposure with cell shrinkage, influx of extracellular calcium (Ca2+), adenosine triphosphate (ATP) and glutathione levels were measured by FACS analysis. In addition, confocal laser scanning microscopy was used to determine RBC morphological alterations, as well as microvesicle formation. Results: Our study confirms that LPA-induced eryptosis is characterized by PS exposure at the cell surface, with cell shrinkage and ATP and glutathione depletion; (Ca2+) influx is also a key event that triggers eryptosis. Here we report for the first time that cell co-incubation with LPA and in quantities as low as 0.1 µM HT causes a significant decrease in PS-exposing RBC, in addition to providing significant protection from the decrease in cell volume. Moreover, treatment of RBC with HT counters the influx of extracellular Ca2+ and completely restores ATP and glutathione content at 1 µM. Finally, under the same experimental conditions, HT exerts a protective effect on RBC morphological changes and microvescicle release, completely restoring the typical biconcave shape at 1 µM. Conclusion: Taken together, the findings reported in this paper point to a novel biological effect for HT in preventing programmed suicidal death in anucleated cells and indicate that prevention from LPA toxic effects may represent an additional mechanism responsible for the health-promoting effect of this dietary phenol which has been claimed, particularly related to cardiovascular diseases

    MYTILUS GALLOPROVINCIALIS PROTAMINE-LIKE PROTEINS ARE NEW BACTERICIDAL MOLECULES ACTIVE ALSO AGAINST ANTIBIOTIC RESISTANT BACTERIA

    No full text
    The discovery of antibiotics with novel mechanisms of action is a critical issue to overcome the serious problem of growing numbers of bacteria resistant to conventional antibiotics. Sperm nuclear basic proteins are the chromosomal proteins that are found associated with DNA in sperm nuclei at the end of spermiogenesis. Protamine-like proteins are one of the three types of Sperm Nuclear Basic Proteins, and represent a structurally and functionally intermediate group of proteins between the histone and protamine type. Protamine-like proteins represent the major acid-soluble protein components of the mussel Mytilus galloprovincialis sperm chromatin and consist of the protamine-like proteins PL-II, PL-III and PL-IV. The aim of this study was to investigate the antibacterial activity of these proteins since, to date, there are reports on bactericidal activity of protamines and histones, but not on protamine like proteins. We tested the bactericidal activity of these proteins against Gram-negative bacteria: Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhmurium, Enterobacter aerogenes, Enterobacter cloacae, and Escherichia coli as well as on Gram-positive bacteria: Enterococcus faecalis and two different strains of Staphylococcus aureus. The results show that Mytilus galloprovincialis protamine-like proteins exhibited bactericidal activity against all bacterial strains tested with different minimum bactericidal concentration values, ranging from 15.7 to 250 µg/mL and also on the clinical isolates of the same bacterial species. Interestingly, these proteins were active against some bacterial strains tested that are resistant to conventional antibiotics. For their possible therapeutic use, we investigated the tossicity of these proteins. We found that these proteins showed very low toxicity as judged by red blood cell lysis and viability MTT assays and seem to act both at the membrane level and within the bacterial cell. Antibacterial proteins have a potential as alternative treatments to standard antibiotic therapies but oral administration would most likely result in the proteins being degraded in the digestive system. In order to analyze this aspect we generated an in vitro model of gastrointestinal digestion of PL-proteins and tested the bactericidal activity of the product obtained on a Gram-positive and a Gram-negative strain. We obtained the same results with respect to undigested protamine-like proteins on the Gram-positive bacterium. In conclusion, this work presents the first evidence obtained for Mytilus galloprovincialis of bactericidal activity of protamine-like-proteins

    Seasonal dependence of cadmium molecular effects on Mytilus galloprovincialis (Lamarck, 1819) protamine-like protein properties

    No full text
    Mussels have a seasonal reproduction and cadmium is a common stressor in estuarine and coastal environments. In previous studies, we have shown that exposure to subtoxic doses of cadmium produced alterations in the properties of winter Mytilus galloprovincialis sperm protamine-like (PL) proteins. In this study, it was analyzed the possibility that these cadmium effects may be seasonal. Winter and summer mussels were exposed to CdCl2 , and it was tested the PL-proteins for cadmium bioaccumulation, electrophoretic pattern, DNA binding, and potentiality to induce DNA oxidative damage. It was found that cadmium exposure did not produce the same effects on PL-proteins of summer mussels that were produced on PL-proteins of winter mussels, that is: cadmium bioaccumulation, alterations in the acetic acid-urea polyacrylamide gels (AU-PAGE) and sodium dodecyl sulfate-PAGE pattern, a reduced DNA binding affinity and the ability to induce DNA oxidative damage. PL-proteins from summer mussels, apart from not being affected by all the abovementioned effects of cadmium, also showed a very low DNA binding affinity, independent of cadmium exposure. This study reveals clock-associated seasonal responses to cadmium in M. galloprovincialis. Understanding the mechanisms through which environmental signals guide biological rhythms is fundamental to understanding the seasonal sensitivity of this bioindicator, to use M. galloprovincialis in appropriate seasonal periods
    corecore