499 research outputs found

    Light Propagation and Large-Scale Inhomogeneities

    Get PDF
    We consider the effect on the propagation of light of inhomogeneities with sizes of order 10 Mpc or larger. The Universe is approximated through a variation of the Swiss-cheese model. The spherical inhomogeneities are void-like, with central underdensities surrounded by compensating overdense shells. We study the propagation of light in this background, assuming that the source and the observer occupy random positions, so that each beam travels through several inhomogeneities at random angles. The distribution of luminosity distances for sources with the same redshift is asymmetric, with a peak at a value larger than the average one. The width of the distribution and the location of the maximum increase with increasing redshift and length scale of the inhomogeneities. We compute the induced dispersion and bias on cosmological parameters derived from the supernova data. They are too small to explain the perceived acceleration without dark energy, even when the length scale of the inhomogeneities is comparable to the horizon distance. Moreover, the dispersion and bias induced by gravitational lensing at the scales of galaxies or clusters of galaxies are larger by at least an order of magnitude.Comment: 27 pages, 9 figures, revised version to appear in JCAP, analytical estimate included, typos correcte

    Design and analysis of fractional factorial experiments from the viewpoint of computational algebraic statistics

    Full text link
    We give an expository review of applications of computational algebraic statistics to design and analysis of fractional factorial experiments based on our recent works. For the purpose of design, the techniques of Gr\"obner bases and indicator functions allow us to treat fractional factorial designs without distinction between regular designs and non-regular designs. For the purpose of analysis of data from fractional factorial designs, the techniques of Markov bases allow us to handle discrete observations. Thus the approach of computational algebraic statistics greatly enlarges the scope of fractional factorial designs.Comment: 16 page

    Clinical Support through Telemedicine in Heart Failure Outpatients during the COVID-19 Pandemic Period: Results of a 12-Months Follow Up

    Get PDF
    Background: Heart failure (HF) patients are predisposed to recurrences and disease destabilizations, especially during the COVID-19 outbreak period. In this scenario, telemedicine could be a proper way to ensure continuous care. The purpose of the study was to compare two modalities of HF outpatients’ follow up, the traditional in-person visits and telephone consultations, during the COVID-19 pandemic period in Italy. Methods: We conducted an observational study on consecutive HF outpatients. The follow up period was 12 months, starting from the beginning of the COVID-19 Italy lockdown. According to the follow up modality, and after the propensity matching score, patients were divided into two groups: those in G1 (n = 92) were managed with traditional in-person visits and those in G2 (n = 92) were managed with telephone consultation. Major adverse cardiovascular events (MACE) were the primary endpoints. Secondary endpoints were overall mortality, cardiovascular death, cardiovascular hospitalization, and hospitalization due to HF. Results: No significant differences between G1 and G2 have been observed regarding MACE (p = 0.65), cardiovascular death (p = 0.39), overall mortality (p = 0.85), hospitalization due to acute HF (p = 0.07), and cardiovascular hospitalization (p = 0.4). Survival analysis performed by the Kaplan–Meier method also did not show significant differences between G1 and G2. Conclusions: Telephone consultations represented a valid option to manage HF outpatients during COVID-19 pandemic, comparable to traditional in-person visits

    Cosmic Microwave Background, Accelerating Universe and Inhomogeneous Cosmology

    Full text link
    We consider a cosmology in which a spherically symmetric large scale inhomogeneous enhancement or a void are described by an inhomogeneous metric and Einstein's gravitational equations. For a flat matter dominated universe the inhomogeneous equations lead to luminosity distance and Hubble constant formulas that depend on the location of the observer. For a general inhomogeneous solution, it is possible for the deceleration parameter to differ significantly from the FLRW result. The deceleration parameter q0q_0 can be interpreted as q0>0q_0 > 0 (q0=1/2q_0=1/2 for a flat matter dominated universe) in a FLRW universe and be q0<0q_0 < 0 as inferred from the inhomogeneous enhancement that is embedded in a FLRW universe. A spatial volume averaging of local regions in the backward light cone has to be performed for the inhomogeneous solution at late times to decide whether the decelerating parameter qq can be negative for a positive energy condition. The CMB temperature fluctuations across the sky can be unevenly distributed in the northern and southern hemispheres in the inhomogeneous matter dominated solution, in agreement with the analysis of the WMAP power spectrum data by several authors. The model can possibly explain the anomalous alignment of the quadrupole and octopole moments observed in the WMAP data.Comment: 20 pages, no figures, LaTex file. Equations and typos corrected and references added. Additional material and some conclusions changed. Final published versio

    Cosmic Acceleration Driven by Mirage Inhomogeneities

    Full text link
    A cosmological model based on an inhomogeneous D3-brane moving in an AdS_5 X S_5 bulk is introduced. Although there is no special points in the bulk, the brane Universe has a center and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the center, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early time acceleration, it is shown that the early stage accelerating phase ends in a dust dominated FRW homogeneous Universe. Mirage-driven acceleration thus provides a dark matter component for the brane Universe final state. We finally show that the model fulfills the current constraints on inhomogeneities.Comment: 14 pages, 1 figure, IOP style. v2, changed style, minor corrections, references added, version accepted in Class. Quant. Gra

    Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae

    Get PDF
    It is now a known fact that if we happen to be living in the middle of a large underdense region, then we will observe an "apparent acceleration", even when any form of dark energy is absent. In this paper, we present a "Minimal Void" scenario, i.e. a "void" with minimal underdensity contrast (of about -0.4) and radius (~ 200-250 Mpc/h) that can, not only explain the supernovae data, but also be consistent with the 3-yr WMAP data. We also discuss consistency of our model with various other measurements such as Big Bang Nucleosynthesis, Baryon Acoustic Oscillations and local measurements of the Hubble parameter, and also point out possible observable signatures.Comment: Minor numerical errors and typos corrected, references adde

    Large-scale magnetic fields from density perturbations

    Get PDF
    We derive the minimal seed magnetic field which unavoidably arises in the radiation and matter eras, prior to recombination, by the rotational velocity of ions and electrons, gravitationally induced by the non-linear evolution of primordial density perturbations. The resulting magnetic field power-spectrum is fully determined by the amplitude and spectral index of density perturbations. The rms amplitude of the seed-field at recombination is B ~ 10^{-23} (\lambda/Mpc)^{-2} G, on comoving scales larger than about 1 Mpc.Comment: 7 pages, 1 figur

    Assessment of the current distribution of free-living parrots and parakeets (Aves: Psittaciformes) in Italy: A synthesis of published data and new records

    Get PDF
    Parrot species are often introduced outside of their native distribution range, as they are among the most popular pets worldwide. Releases, and particularly unplanned escapes, have resulted in the establishment of many naturalised populations in Europe, including Italy. Many parrot species present wide ecological tolerance and high synanthropy, but the knowledge of their distribution in the areas of introduction is limited. The introduction of these species may have a negative impact on local biodiversity, particularly in terms of competition with hole-nesting birds and bats, crop damage and epidemiology, so that it has become crucial to provide accurate and up-to-date research on the distribution of these taxa. This work aimed at reporting the occurrence points of the various Psittaciformes species in Italy. Records for 21 species (72.41% of those reported for all of Europe) were collected, with five of them breeding, always close to urban centres. © 2013 Copyright 2013 Unione Zoologica Italiana

    Testing the Void against Cosmological data: fitting CMB, BAO, SN and H0

    Full text link
    In this paper, instead of invoking Dark Energy, we try and fit various cosmological observations with a large Gpc scale under-dense region (Void) which is modeled by a Lemaitre-Tolman-Bondi metric that at large distances becomes a homogeneous FLRW metric. We improve on previous analyses by allowing for nonzero overall curvature, accurately computing the distance to the last-scattering surface and the observed scale of the Baryon Acoustic peaks, and investigating important effects that could arise from having nontrivial Void density profiles. We mainly focus on the WMAP 7-yr data (TT and TE), Supernova data (SDSS SN), Hubble constant measurements (HST) and Baryon Acoustic Oscillation data (SDSS and LRG). We find that the inclusion of a nonzero overall curvature drastically improves the goodness of fit of the Void model, bringing it very close to that of a homogeneous universe containing Dark Energy, while by varying the profile one can increase the value of the local Hubble parameter which has been a challenge for these models. We also try to gauge how well our model can fit the large-scale-structure data, but a comprehensive analysis will require the knowledge of perturbations on LTB metrics. The model is consistent with the CMB dipole if the observer is about 15 Mpc off the centre of the Void. Remarkably, such an off-center position may be able to account for the recent anomalous measurements of a large bulk flow from kSZ data. Finally we provide several analytical approximations in different regimes for the LTB metric, and a numerical module for CosmoMC, thus allowing for a MCMC exploration of the full parameter space.Comment: 70 pages, 12 figures, matches version accepted for publication in JCAP. References added, numerical values in tables changed due to minor bug, conclusions unaltered. Numerical module available at http://web.physik.rwth-aachen.de/download/valkenburg
    • 

    corecore