8 research outputs found

    Kinase inhibitors for the treatment of inflammatory and autoimmune disorders

    Get PDF
    Drugs targeting inhibition of kinases for the treatment of inflammation and autoimmune disorders have become a major focus in the pharmaceutical and biotech industry. Multiple kinases from different pathways have been the targets of interest in this endeavor. This review describes some of the recent developments in the search for inhibitors of IKK2, Syk, Lck, and JAK3 kinases. It is anticipated that some of these compounds or newer inhibitors of these kinases will be approved for the treatment of rheumatoid arthritis, psoriasis, organ transplantation, and other autoimmune diseases

    Metaphyseal dysplasia type Schmid. Early X-ray detection and evolution with time

    No full text

    Metaphyseal dysplasia, type Schmid

    No full text

    Sterile inflammation via TRPM8 RNA-dependent TLR3-NF-kB/IRF3 activation promotes antitumor immunity in prostate cancer.

    Get PDF
    Inflammation is a common condition of prostate tissue, whose impact on carcinogenesis is highly debated. Microbial colonization is a well-documented cause of a small percentage of prostatitis cases, but it remains unclear what underlies the majority of sterile inflammation reported. Here, androgen- independent fluctuations of PSA expression in prostate cells have lead us to identify a prominent function of the Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPM8) gene in sterile inflammation. Prostate cells secret TRPM8 RNA into extracellular vesicles (EVs), which primes TLR3/NF-kB-mediated inflammatory signaling after EV endocytosis by epithelial cancer cells. Furthermore, prostate cancer xenografts expressing a translation-defective form of TRPM8 RNA contain less collagen type I in the extracellular matrix, significantly more infiltrating NK cells, and larger necrotic areas as compared to control xenografts. These findings imply sustained, androgen-independent expression of TRPM8 constitutes as a promoter of anticancer innate immunity, which may constitute a clinically relevant condition affecting prostate cancer prognosis

    Device-detected atrial sensing amplitudes as a marker of increased risk for new onset and progression of atrial high-rate episodes

    No full text
    Background: Atrial high-rate episodes (AHREs) are frequent in patients with cardiac implantable electronic devices. A decrease in device-detected P-wave amplitude may be an indicator of periods of increased risk of AHRE. Objective: The objective of this study was to assess the association between P-wave amplitude and AHRE incidence. Methods: Remote monitoring data from 2579 patients with no history of atrial fibrillation (23% pacemakers and 77% implantable cardioverter-defibrillators, of which 40% provided cardiac resynchronization therapy) were used to calculate the mean P-wave amplitude during 1 month after implantation. The association with AHRE incidence according to 4 strata of daily burden duration (≥15 minutes, ≥6 hours, ≥24 hours, ≥7 days) was investigated by adjusting the hazard ratio with the CHA2DS2-VASc score. Results: The adjusted hazard ratio for 1-mV lower mean P-wave amplitude during the first month increased from 1.10 (95% confidence interval [CI], 1.05-1.15; P < .001) to 1.18 (CI, 1.09-1.28; P < .001) with AHRE duration strata from ≥15 minutes to ≥7 days independent of the CHA2DS2-VASc score. Of 871 patients with AHREs, those with 1-month P-wave amplitude <2.45 mV had an adjusted hazard ratio of 1.51 (CI, 1.19-1.91; P = .001) for progression of AHREs from ≥15 minutes to ≥7 days compared with those with 1-month P-wave amplitude ≥2.45 mV. Device-detected P-wave amplitudes decreased linearly during the 1 year before the first AHRE by 7.3% (CI, 5.1%-9.5%; P < .001 vs patients without AHRE). Conclusion: Device-detected P-wave amplitudes <2.45 mV were associated with an increased risk of AHRE onset and progression to persistent forms of AHRE independent of the patient's risk profile

    CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation

    No full text
    International audienceLymphocyte functions triggered by antigen recognition and co-stimulation signals are associated with a rapid and intense cell division, and hence with metabolism adaptation. The nucleotide cytidine 5' triphosphate (CTP) is a precursor required for the metabolism of DNA, RNA and phospholipids. CTP originates from two sources: a salvage pathway and a de novo synthesis pathway that depends on two enzymes, the CTP synthases (or synthetases) 1 and 2 (CTPS1 with CTPS2); the respective roles of these two enzymes are not known. CTP synthase activity is a potentially important step for DNA synthesis in lymphocytes. Here we report the identification of a loss-of-function homozygous mutation (rs145092287) in CTPS1 in humans that causes a novel and life-threatening immunodeficiency, characterized by an impaired capacity of activated T and B cells to proliferate in response to antigen receptor-mediated activation. In contrast, proximal and distal T-cell receptor (TCR) signalling events and responses were only weakly affected by the absence of CTPS1. Activated CTPS1-deficient cells had decreased levels of CTP. Normal T-cell proliferation was restored in CTPS1-deficient cells by expressing wild-type CTPS1 or by addition of exogenous CTP or its nucleoside precursor, cytidine. CTPS1 expression was found to be low in resting T cells, but rapidly upregulated following TCR activation. These results highlight a key and specific role of CTPS1 in the immune system by its capacity to sustain the proliferation of activated lymphocytes during the immune response. CTPS1 may therefore represent a therapeutic target of immunosuppressive drugs that could specifically dampen lymphocyte activation
    corecore