14 research outputs found

    Effect of gender-affirming hormone use on coagulation profiles in transmen and transwomen

    Get PDF
    Background The transgender population that uses gender-affirming hormone therapy (GAHT) is rapidly growing. The (side) effects of GAHT are largely unknown. We examined the effect of GAHT on coagulation parameters associated with venous thromboembolism (VTE) risk.Methods Factor (F)II, FIX, FXI, protein (p)C and free pS, fibrinogen, hematocrit, sex hormone-binding globulin, and normalized activated protein C ratio were measured in 98 transwomen (male sex at birth, female gender identity) and 100 transmen (female sex at birth, male gender identity) before and after 12 months of GAHT (oral or transdermal estradiol and anti-androgens in transwomen, transdermal or intramuscular testosterone in transmen). Mean paired differences in coagulation measurements were estimated with 95% confidence intervals (95% CI). Differences for route of administration and age were assessed with linear regression.Results After GAHT, transwomen had more procoagulant profiles with a mean increase in FIX: 9.6 IU/dL (95% CI 3.1-16.0) and FXI: 13.5 IU/dL (95% CI 9.5-17.5), and a decrease in pC: -7.7 IU/dL (95% CI -10.1 to -5.2). Changes in measures of coagulation were influenced by route of administration (oral vs. transdermal) and age. A higher sex-hormone binding globulin level after 12 months was associated with a lower activated protein C resistance. In transmen, changes were not procoagulant overall and were influenced by age. Differences for route of administration (transdermal vs. intramuscular) were small.Conclusions GAHT in transmen was not associated with apparent procoagulant changes, which provides some reassurance regarding VTE risk. In transwomen, GAHT resulted in procoagulant changes, which likely contributes to the observed increased VTE risk.Clinical epidemiolog

    What has sex got to do with it? The role of hormones in the transgender brain: neurobiology, pituitary hormones, and brain diseases

    No full text
    Sex differences and hormonal effects in presumed cisgender individuals have been well-studied and support the concept of a mosaic of both male and female “characteristics” in any given brain. Gonadal steroid increases and fluctuations during peri-puberty and across the reproductive lifespan influence the brain structure and function programmed by testosterone and estradiol exposures in utero. While it is becoming increasingly common for transgender and gender non-binary individuals to block their transition to puberty and/or use gender-affirming hormone therapy (GAHT) to obtain their desired gender phenotype, little is known about the impact of these manipulations on brain structure and function. Using sex differences and the effects of reproductive hormones in cisgender individuals as the backdrop, we summarize here the existing nascent neuroimaging and behavioral literature focusing on potential brain and cognitive differences in transgender individuals at baseline and after GAHT. Research in this area has the potential to inform our understanding of the developmental origins of gender identity and sex difference in response to gonadal steroid manipulations, but care is needed in our research questions and methods to not further stigmatize sex and gender minorities

    Expression of mtc in Folsomia candida indicative of metal pollution.

    No full text
    The soil-living springtail Folsomia candida is frequently used in reproduction bioassays to assess soil contamination. Alternatively, the response of genes to contamination is assessed. In this study the expression of F. candida's gene encoding the deduced metallothionein-like motif containing protein (MTC) was assessed, using quantitative PCR, in response to six different metals, each at two concentrations in soil. The expression of mtc was induced after exposure to all metals, except for one chromium concentration. Exposure to soil originating from metal-contaminated field sites also induced mtc, while the expression did not change in response to a polycyclic aromatic hydrocarbon. Since this transcript is induced by most of the tested metals, it may potentially be a good indicator of metal contamination. The presented gene expression assay might become a useful tool to screen potentially polluted sites, in order to identify the ones that need further ecotoxicological investigation. © 2011 Elsevier Ltd. All rights reserved

    Genetic Variation in Parthenogenetic Collembolans Is Associated with Differences in Fitness and Cadmium-Induced Transcriptome Responses

    No full text
    Ecotoxicological tests may be biased by the use of laboratory strains that usually contain very limited genetic diversity. It is therefore essential to study how genetic variation influences stress tolerance relevant for toxicity outcomes. To that end we studied sensitivity to cadmium in two distinct genotypes of the parthogenetic soil ecotoxicological model organism Folsomia candida. Clonal lines of both genotypes (TO1 and TO2) showed divergent fitness responses to cadmium exposure; TO2 reproduction was 20% less affected by cadmium. Statistical analyses revealed significant differences between the cadmium-affected transcriptomes: i) the number of genes affected by cadmium in TO2 was only minor (∼22%) compared to TO1; ii) 97 genes showed a genotype × cadmium interaction and their response to cadmium showed globally larger fold changes in TO1 when compared to TO2; iii) the interaction genes showed a concerted manner of expression in TO1, while a less coordinated pattern was observed in TO2. We conclude that (1) there is genetic variation in parthenogenetic populations of F. candida, and (2) this variation affects life-history and molecular end points relative to cadmium toxicity. This sheds new light on the sources of biological variability in test results, even when the test organisms are thought to be genetically homogeneous because of their parthenogenetic reproduction. © 2012 American Chemical Society

    Gene expression analysis of Collembola in cadmium containing soil.

    No full text
    Increasing concern about pollution of our environment calls for advanced and rapid methods to estimate ecological toxicity. The use of gene expression microarrays in environmental studies can potentially meet this challenge. We present a novel method to examine soil toxicity. We exposed the collembolan Folsomia candida to soil containing an ecologically relevant cadmium concentration, and found a cumulative total of 1586 differentially expressed transcripts across three exposure durations, including transcripts involved in stress response, detoxification, and hypoxia. Additional enrichment analysis of gene ontology (GO) terms revealed that antibiotic biosynthesis is important at all time points examined. Interestingly, genes involved in the "penicillin and cephalosporin biosynthesis pathway" have never been identified in animals before, but are expressed in F. candida's tissue. The synthesis of antibiotics can possibly be a response to increased cadmium-induced susceptibility to invading pathogens, which might be caused by repression of genes involved in the immune-system (C-type lectins and Toll receptor). This study presents a first global view on the environmental stress response of an arthropod species exposed to contaminated soil, and provides a mechanistic basis for the development of a gene expression soil quality test. © 2008 American Chemical Society
    corecore