35 research outputs found

    Response of lettuce to Cd-enriched water and irrigation frequencies

    Get PDF
    This pot experiment was an attempt to investigate a broad response of lettuce to different cadmium (Cd) levels of irrigation water (0, 5, 10 and 20 mg l-1) under different irrigation intervals (1, 2 and 4 days). The results showed that increased level of soil Cd through irrigation eventually decreased the yield of lettuce in all cases; however, in some cases yield was increased with lower doses of Cd application. No injury symptoms were observed other than plant height and yield reduction. Shoot dry weight proved to be the most sensitive parameters to the cadmium, especially under water stress conditions. The results also showed that the concentrations of nutrient elements in lettuce shoot were suppressed by water stress. The presence of cadmium in irrigation water did not significantly affect the absorption of nutrient elements by plants except for Fe. Shoot Cd concentration and its uptake decreased with increasing irrigation frequencies and the reverse trend occurred with increasing Cd levels of irrigation water. However, the values were higher than recommended guideline in all conditions. Also, shoot Cd content showed a significant positive correlation with the final accumulated Cd concentration of soil and was expressed by a plateau model under the dry irrigation regime and linear models at other irrigation intervals. Overall, shoot Cd concentration was predicted by using a simple linear regression model regardless of evapotranspiration and transpiration rate of plant.Key words: Cadmium toxicity; chemical composition; irrigation frequency; lettuce

    Intelligent active force control of a 3-RRR parallel manipulator incorporating fuzzy resolved acceleration control

    Get PDF
    This paper introduces a novel intelligent control scheme for robust and precise positioning and orientation of a class of highly non-linear 3-RRR (revolute-revolute-revolute) planar parallel manipulator. The primary objective is to force the manipulator to track accurately a prescribed Cartesian trajectory when the system is subjected to different types of disturbances in the forms of forced harmonic excitations. A two level fuzzy tuning resolved acceleration control (FLRAC) is first designed and implemented to the system to demonstrate the stable response of the manipulator in performing trajectory tracking tasks in the absence of the disturbances. In this scheme, the first level of fuzzy tuning is used to acquire the proportional-derivative (PD) gains linearly while the second level considers non-linear tuning for determining the other parameters of the fuzzy controller to increase its performance. Then, the controller is added in series with an active force controller (AFC) to create a novel two degree-of-freedom (DOF) controller known as FLRAC-AFC which is subsequently and rigorously tested for system robustness and accuracy in tracking the prescribed trajectory. The simulation study provides further insight into the potentials of the proposed robotic system in rejecting the disturbances for the given operating conditions. The results clearly show that the FLRAC-AFC scheme provides a much superior trajectory tracking capability compared to the conventional linear RAC alone

    Active disturbance rejection control of a parallel manipulator with self learning algorithm for a pulsating trajectory tracking task

    Get PDF
    A novel and robust intelligent scheme is proposed to control a highly non-linear 3-RRR (revolute-revolute-revolute) planar parallel robotic manipulator, via an Active Force Control (AFC) strategy that is embedded into the classic Proportional-Integral-Derivative (PID) control loop. A PID-type Iterative Learning (IL) algorithm, with randomized initial conditions, is incorporated into the AFC loop to approximate the estimated inertia matrices of the manipulator adaptively while the manipulator is tracking a prescribed pulsating trajectory in the presence of harmonic disturbances. The IL algorithm employs a stopping criterion, which is based on tracking error, to stop the learning process when the desired error goal of the system is reached, to signify a favorable controlled condition. A numerical simulation study was performed to verify the robustness of the proposed methodology in rejecting disturbances, based on given loading and operating environments. The results of the study reveal the superiority of the proposed system, in terms of its excellent tracking performance compared to the AFC, with crude approximation techniques, and Proportional-Integral-Derivative (PID) counterparts

    Performance analysis of the computed torque based active force control for a planar parallel manipulator

    No full text
    This paper presents a novel approach to control a 3-RRR (revolute-revolute-revolute) planar parallel manipulator applying an active force control (AFC) strategy. A PID-based computed torque controller (CTC) was first designed and developed to demonstrate the basic and stable response of the manipulator in order to follow a prescribed trajectory. Then, the AFC part was incorporated into the control scheme in series with the CTC (AFC-CTC) in a cascade form. Performance of the system was demonstrated by the computer simulation results. By using the AFC method, the design of trajectory tracking controller can be conducted based on a precise model of the system. The overall tracking performance was improved with using AFC scheme in presence of known or unknown disturbances. Results clearly illustrate the robustness and effectiveness of the proposed AFC-based scheme as a robust disturbance rejecter compared to the conventional CT controller
    corecore