2 research outputs found
Visualization of rapid electron precipitation via chorus element wave-particle interactions
Abstract
Chorus waves, among the most intense electromagnetic emissions in the Earth’s magnetosphere, magnetized planets, and laboratory plasmas, play an important role in the acceleration and loss of energetic electrons in the plasma universe through resonant interactions with electrons. However, the spatial evolution of the electron resonant interactions with electromagnetic waves remains poorly understood owing to imaging difficulties. Here we provide a compelling visualization of chorus element wave–particle interactions in the Earth’s magnetosphere. Through in-situ measurements of chorus waveforms with the Arase satellite and transient auroral flashes from electron precipitation events as detected by 100-Hz video sampling from the ground, Earth’s aurora becomes a display for the resonant interactions. Our observations capture an asymmetric spatial development, correlated strongly with the amplitude variation of discrete chorus elements. This finding is not theoretically predicted but helps in understanding the rapid scattering processes of energetic electrons near the Earth and other magnetized planets
Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network
Abstract
The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to mega-electron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes (~ 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will contribute to the investigation of dynamical variation of particles and waves in the inner magnetosphere, which is one of the most important research topics in recent space physics, and the outcome of our research will improve safe and secure use of geospace around the Earth