630 research outputs found

    Molecular Dynamics Simulation of Heat-Conducting Near-Critical Fluids

    Full text link
    Using molecular dynamics simulations, we study supercritical fluids near the gas-liquid critical point under heat flow in two dimensions. We calculate the steady-state temperature and density profiles. The resultant thermal conductivity exhibits critical singularity in agreement with the mode-coupling theory in two dimensions. We also calculate distributions of the momentum and heat fluxes at fixed density. They indicate that liquid-like (entropy-poor) clusters move toward the warmer boundary and gas-like (entropy-rich) regions move toward the cooler boundary in a temperature gradient. This counterflow results in critical enhancement of the thermal conductivity

    Carbon superatom thin films

    Full text link
    Assembling clusters on surfaces has emerged as a novel way to grow thin films with targeted properties. In particular, it has been proposed from experimental findings that fullerenes deposited on surfaces could give rise to thin films retaining the bonding properties of the incident clusters. However the microscopic structure of such films is still unclear. By performing quantum molecular dynamics simulations, we show that C_28 fullerenes can be deposited on a surface to form a thin film of nearly defect free molecules, which act as carbon superatoms. Our findings help clarify the structure of disordered small fullerene films and also support the recently proposed hyperdiamond model for solid C_28.Comment: 13 pages, RevTeX, 2 figures available as black and white PostScript files; color PostScript and/or gif files available upon reques

    Heat conduction in 1D lattices with on-site potential

    Full text link
    The process of heat conduction in one-dimensional lattice with on-site potential is studied by means of numerical simulation. Using discrete Frenkel-Kontorova, ϕ\phi--4 and sinh-Gordon we demonstrate that contrary to previously expressed opinions the sole anharmonicity of the on-site potential is insufficient to ensure the normal heat conductivity in these systems. The character of the heat conduction is determined by the spectrum of nonlinear excitations peculiar for every given model and therefore depends on the concrete potential shape and temperature of the lattice. The reason is that the peculiarities of the nonlinear excitations and their interactions prescribe the energy scattering mechanism in each model. For models sin-Gordon and ϕ\phi--4 phonons are scattered at thermalized lattice of topological solitons; for sinh-Gordon and ϕ\phi--4 - models the phonons are scattered at localized high-frequency breathers (in the case of ϕ\phi--4 the scattering mechanism switches with the growth of the temperature).Comment: 26 pages, 18 figure

    Thermal transistor: Heat flux switching and modulating

    Full text link
    Thermal transistor is an efficient heat control device which can act as a heat switch as well as a heat modulator. In this paper, we study systematically one-dimensional and two-dimensional thermal transistors. In particular, we show how to improve significantly the efficiency of the one-dimensional thermal transistor. The study is also extended to the design of two-dimensional thermal transistor by coupling different anharmonic lattices such as the Frenkel-Kontorova and the Fermi-Pasta-Ulam lattices. Analogy between anharmonic lattices and single-walled carbon nanotube is drawn and possible experimental realization with multi-walled nanotube is suggested.Comment: To appear in J. Phys. Soc. Jp

    Stability of gold nanowires at large Au-Au separations

    Full text link
    The unusual structural stability of gold nanowires at large separations of gold atoms is explained from first-principles quantum mechanical calculations. We show that undetected light atoms, in particular hydrogen, stabilize the experimentally observed structures, which would be unstable in pure gold wires. The enhanced cohesion is due to the partial charge transfer from gold to the light atoms. This finding should resolve a long-standing controversy between theoretical predictions and experimental observations.Comment: 7 pages, 3 figure

    Ab Initio Molecular Dynamics Simulation of Liquid Ga_xAs_{1-x} Alloys

    Full text link
    We report the results of ab initio molecular dynamics simulations of liquid Ga_xAs_{1-x} alloys at five different concentrations, at a temperature of 1600 K, just above the melting point of GaAs. The liquid is predicted to be metallic at all concentrations between x = 0.2 and x = 0.8, with a weak resistivity maximum near x = 0.5, consistent with the Faber-Ziman expression. The electronic density of states is finite at the Fermi energy for all concentrations; there is, however, a significant pseudogap especially in the As-rich samples. The Ga-rich density of states more closely resembles that of a free-electron metal. The partial structure factors show only a weak indication of chemical short-range order. There is also some residue of the covalent bonding found in the solid, which shows up in the bond-angle distribution functions of the liquid state. Finally, the atomic diffusion coefficients at 1600K are calculated to be 2.1 \times 10^{-4} cm^2/sec for Ga ions in Ga_{0.8}As_{0.2} and 1.7 \times 10^{-4} cm^2/sec for As ions in Ga_{0.2}As_{0.8}.Comment: 29 pages, 10 eps figures, accepted for publication in Phys. Rev.

    Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100)

    Full text link
    The rate of diffusion of a Cu adatom on the Cu(100) surface is calculated using thermodynamic integration within the transition state theory. The results are found to be in excellent agreement with the essentially exact values from molecular-dynamics simulations. The activation energy and related entropy are shown to be effectively independent of temperature, thus establishing the validity of the Arrhenius law over a wide range of temperatures. Our study demonstrates the equivalence of diffusion rates calculated using thermodynamic integration within the transition state theory and direct molecular-dynamics simulations.Comment: 4 pages (revtex), two figures (postscript

    Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier

    Full text link
    We address the problem of heat conduction in 1-D nonlinear chains; we show that, acting on the parameter which controls the strength of the on site potential inside a segment of the chain, we induce a transition from conducting to insulating behavior in the whole system. Quite remarkably, the same transition can be observed by increasing the temperatures of the thermal baths at both ends of the chain by the same amount. The control of heat conduction by nonlinearity opens the possibility to propose new devices such as a thermal rectifier.Comment: 4 pages with figures included. Phys. Rev. Lett., to be published (Ref. [10] corrected
    corecore