10,882 research outputs found

    Remote Sensing of Environmental Pollution

    Get PDF
    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available

    Mission 73 - Summary and data catalog

    Get PDF
    Earth resources program geographic applications program summary, recommendations, and data catalog for remote sensor mission 7

    Stochastic Perturbations of Periodic Orbits with Sliding

    Full text link
    Vector fields that are discontinuous on codimension-one surfaces are known as Filippov systems and can have attracting periodic orbits involving segments that are contained on a discontinuity surface of the vector field. In this paper we consider the addition of small noise to a general Filippov system and study the resulting stochastic dynamics near such a periodic orbit. Since a straight-forward asymptotic expansion in terms of the noise amplitude is not possible due to the presence of discontinuity surfaces, in order to quantitatively determine the basic statistical properties of the dynamics, we treat different parts of the periodic orbit separately. Dynamics distant from discontinuity surfaces is analyzed by the use of a series expansion of the transitional probability density function. Stochastically perturbed sliding motion is analyzed through stochastic averaging methods. The influence of noise on points at which the periodic orbit escapes a discontinuity surface is determined by zooming into the transition point. We combine the results to quantitatively determine the effect of noise on the oscillation time for a three-dimensional canonical model of relay control. For some parameter values of this model, small noise induces a significantly large reduction in the average oscillation time. By interpreting our results geometrically, we are able to identify four features of the relay control system that contribute to this phenomenon.Comment: 44 pages, 9 figures, submitted to: J Nonlin. Sc

    Probabilistic models of planetary contamination

    Get PDF
    Likely fundamental inadequacies in the model of planetary contamination advanced by Sagan and Coleman are discussed. It is shown that a relatively minor modification of the basic Sagan-Coleman formula yields approximations that are generally adequate with data in the range of interest. This approximation formula differs from the original Sagan-Coleman version only through an initial conditioning on landing outcome. It always yields an upper (conservative) bound for the total probability of contamination, this appealing feature is lost if the conditioning on landing outcome is deleted

    New methodology for assessing the probability of contaminating Mars

    Get PDF
    Methodology is proposed to assess the probability that the planet Mars will be contaminated by terrestrial microorganisms aboard a spacecraft. The present NASA methods are extended to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Different types of microbial release are distinguished, and for each release mechanism a probability of growth is computed. Using this new methodology, an assessment was carried out for the 1975 Viking landings on Mars. The resulting probability of contamination for each Viking lander is 6 x 10 to the -6 power, and is amenable to revision as additional information becomes available

    Periplasmic enzymes and the cell envelope of gram negative bacteria

    Get PDF

    Assessment of the probability of contaminating Mars

    Get PDF
    New methodology is proposed to assess the probability that the planet Mars will by biologically contaminated by terrestrial microorganisms aboard a spacecraft. Present NASA methods are based on the Sagan-Coleman formula, which states that the probability of contamination is the product of the expected microbial release and a probability of growth. The proposed new methodology extends the Sagan-Coleman approach to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Three different types of microbial release are distinguished in the model for assessing the probability of contamination. The number of viable microbes released by each mechanism depends on the bio-burden in various locations on the spacecraft and on whether the spacecraft landing is accomplished according to plan. For each of the three release mechanisms a probability of growth is computed, using a model for transport into an environment suited to microbial growth

    The Great Heronry of Garsen on the river Tana

    Get PDF
    Volume: XXII

    Notes on the sea Birds of brava

    Get PDF
    Volume: XVII

    A Field guide to the scavenging birds of Kenya

    Get PDF
    Volume: XV
    corecore