11 research outputs found

    The "Unromantic Pictures" of Quantum Theory

    Get PDF
    I am concerned with two views of quantum mechanics that John S. Bell called ``unromantic'': spontaneous wave function collapse and Bohmian mechanics. I discuss some of their merits and report about recent progress concerning extensions to quantum field theory and relativity. In the last section, I speculate about an extension of Bohmian mechanics to quantum gravity.Comment: 37 pages LaTeX, no figures; written for special volume of J. Phys. A in honor of G.C. Ghirard

    Bell-Type Quantum Field Theories

    Full text link
    In [Phys. Rep. 137, 49 (1986)] John S. Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a |Psi|^2-distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; such processes we call Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to "second quantization." As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field.Comment: 53 pages LaTeX, no figure

    Free Will in a Quantum World?

    Get PDF
    In this paper, I argue that Conway and Kochen’s Free Will Theorem (1,2) to the conclusion that quantum mechanics and relativity entail freedom for the particles, does not change the situation in favor of a libertarian position as they would like. In fact, the theorem more or less implicitly assumes that people are free, and thus it begs the question. Moreover, it does not prove neither that if people are free, so are particles, nor that the property people possess when they are said to be free is the same as the one particles possess when they are claimed to be free. I then analyze the Free State Theorem (2), which generalizes the Free Will Theorem without the assumption that people are free, and I show that it does not prove anything about free will, since the notion of freedom for particles is either inconsistent, or it does not concern our common understanding of freedom. In both cases, the Free Will Theorem and the Free State Theorem do not provide any enlightenment on the constraints physics can pose on free will

    Does quantum nonlocality irremediably conflict with Special Relativity?

    Full text link
    We reconsider the problem of the compatibility of quantum nonlocality and the requests for a relativistically invariant theoretical scheme. We begin by discussing a recent important paper by T. Norsen [arXiv:0808.2178] on this problem and we enlarge our considerations to give a general picture of the conceptually relevant issue to which this paper is devoted.Comment: 18 pages, 1 figur

    Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling

    Full text link
    The experimental violation of Bell inequalities using spacelike separated measurements precludes the explanation of quantum correlations through causal influences propagating at subluminal speed. Yet, any such experimental violation could always be explained in principle through models based on hidden influences propagating at a finite speed v>c, provided v is large enough. Here, we show that for any finite speed v with c<v<infinity, such models predict correlations that can be exploited for faster-than-light communication. This superluminal communication does not require access to any hidden physical quantities, but only the manipulation of measurement devices at the level of our present-day description of quantum experiments. Hence, assuming the impossibility of using nonlocal correlations for superluminal communication, we exclude any possible explanation of quantum correlations in terms of influences propagating at any finite speed. Our result uncovers a new aspect of the complex relationship between multipartite quantum nonlocality and the impossibility of signalling.Comment: 5+8 pages, 4 figures, version similar to the published on

    Against the 'No-Go' Philosophy of Quantum Mechanics

    Get PDF
    In the area of the foundations of quantum mechanics a true industry appears to have developed in the last decades, with the aim of proving as many results as possible concerning what there cannot be in the quantum realm. In principle, the significance of proving ‘no-go’ results should consist in clarifying the fundamental structure of the theory, by pointing out a class of basic constraints that the theory itself is supposed to satisfy. In the present paper I will discuss some more recent no-go claims and I will argue against the deep significance of these results, with a two-fold strategy. First, I will consider three results concerning respectively local realism, quantum covariance and predictive power in quantum mechanics, and I will try to show how controversial the main conditions of the negative theorem turn out to be – something that strongly undermines the general relevance of these theorems. Second, I will try to discuss what I take to be a common feature of these theoretical enterprises, namely that of aiming at establishing negative results for quantum mechanics in absence of a deeper understanding of the overall ontological content and structure of the theory. I will argue that the only way toward such an understanding may be to cast in advance the problems in a clear and well-defined interpretational framework – which in my view means primarily to specify the ontology that quantum theory is supposed to be about – and after to wonder whether problems that seemed worth pursuing still are so in the framework
    corecore