10,714 research outputs found

    Comment on "Self-Purification in Semiconductor Nanocrystals"

    Full text link
    In a recent Letter [PRL 96, 226802 (2006)], Dalpian and Chelikowsky claimed that formation energies of Mn impurities in CdSe nanocrystals increase as the size of the nanocrystal decreases, and argued that this size dependence leads to "self-purification" of small nanocrystals. They presented density-functional-theory (DFT) calculations showing a strong size dependence for Mn impurity formation energies, and proposed a general explanation. In this Comment we show that several different DFT codes, pseudopotentials, and exchange-correlation functionals give a markedly different result: We find no such size dependence. More generally, we argue that formation energies are not relevant to substitutional doping in most colloidally grown nanocrystals.Comment: 1 page, 1 figur

    Anomalous light shift through quantum jumps in quasi-resonant Rayleigh scattering

    Full text link
    An anomalous light shift in the precession of a ground-state Zeeman coherence is observed: the Larmor frequency increases with the strength of a drive that is blue (red) detuned from a transition out of the lower (upper) energy level. Our measurements are made on Rb 85 atoms traversing an optical cavity containing a few photons; shifts as large as 1% per photon are recorded. The anomalous shift arises from an accumulation of phase driven by quantum jumps. It is stochastic and accompanied by broadening.Comment: 5 pages, 4 figure

    The Spatial Correlation of Bent-Tail Galaxies and Galaxy Clusters

    Full text link
    We have completed a deep radio continuum survey covering 86 square degrees of the Spitzer-South Pole Telescope deep field to test whether bent-tail galaxies are associated with galaxy clusters. We present a new catalogue of 22 bent-tail galaxies and a further 24 candidate bent-tail galaxies. Surprisingly, of the 8 bent-tail galaxies with photometric redshifts, only two are associated with known clusters. While the absence of bent-tail sources in known clusters may be explained by effects such as sensitivity, the absence of known clusters associated with most bent-tail galaxies casts doubt upon current models of bent-tail galaxies.Comment: Accepted by MNRA

    Atom detection in a two-mode optical cavity with intermediate coupling: Autocorrelation studies

    Full text link
    We use an optical cavity in the regime of intermediate coupling between atom and cavity mode to detect single moving atoms. Degenerate polarization modes allow excitation of the atoms in one mode and collection of spontaneous emission in the other, while keeping separate the two sources of light; we obtain a higher confidence and efficiency of detection by adding cavity-enhanced Faraday rotation. Both methods greatly benefit from coincidence detection of photons, attaining fidelities in excess of 99% in less than 1 microsecond. Detailed studies of the second-order intensity autocorrelation function of light from the signal mode reveal evidence of antibunched photon emissions and the dynamics of single-atom transits.Comment: 10 pages, 10 figures, to be published in Phys. Rev.

    The ATLAS-SPT Radio Survey of Cluster Galaxies

    Get PDF
    Using a high-performance computing cluster to mosaic 4,787 pointings, we have imaged the 100 sq. deg. South Pole Telescope (SPT) deep-field at 2.1 GHz using the Australian Telescope Compact Array to an rms of 80 μ\muJy and a resolution of 8". Our goal is to generate an independent sample of radio-selected galaxy clusters to study how the radio properties compare with cluster properties at other wavelengths, over a wide range of redshifts in order to construct a timeline of their evolution out to z1.3z \sim 1.3. A preliminary analysis of the source catalogue suggests there is no spatial correlation between the clusters identified in the SPT-SZ catalogue and our wide-angle tail galaxies.Comment: 9 pages, 4 figures. Submitted to Proceedings of Science for "The many facets of extragalactic radio surveys: towards new scientific challenges", Bologna, Italy 20-23 October 2015 (EXTRA-RADSUR2015

    Conditional control of quantum beats in a cavity QED system

    Full text link
    We probe a ground-state superposition that produces a quantum beat in the intensity correlation of a two-mode cavity QED system. We mix drive with scattered light from an atomic beam traversing the cavity, and effectively measure the interference between the drive and the light from the atom. When a photon escapes the cavity, and upon detection, it triggers our feedback which modulates the drive at the same beat frequency but opposite phase for a given time window. This results in a partial interruption of the beat oscillation in the correlation function, that then returns to oscillate.Comment: 9 pages, 5 figures, XVII Reuni\'on Iberoamericana de \'Optica, X Encuentro de \'Optica, L\'aseres y Aplicaciones (RIAO-OPTILAS-2010

    Observation of ground-state quantum beats in atomic spontaneous emission

    Full text link
    We report ground-state quantum beats in spontaneous emission from a continuously driven atomic ensemble. Beats are visible only in an intensity autocorrelation and evidence spontaneously generated coherence in radiative decay. Our measurement realizes a quantum eraser where a first photon detection prepares a superposition and a second erases the "which-path" information in the intermediate state.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Letter

    High flux cold Rubidium atomic beam for strongly coupled Cavity QED

    Full text link
    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity QED experiments in the regime of strong coupling. A 2 D+D^+ MOT, loaded by rubidium getters in a dry film coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate of 1.5 x 101010^{10} atoms/sec. The MM-MOT provided a continuous beam with tunable velocity. This beam was then directed through the waist of a 280 μ\mum cavity resulting in a Rabi splitting of more than +/- 10 MHz. The presence of sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling regime, with parameters (g, κ\kappa, γ\gamma)/2π\pi equal to (7, 3, 6)/ 2π\pi MHz.Comment: Journal pape
    corecore