10,714 research outputs found
Comment on "Self-Purification in Semiconductor Nanocrystals"
In a recent Letter [PRL 96, 226802 (2006)], Dalpian and Chelikowsky claimed
that formation energies of Mn impurities in CdSe nanocrystals increase as the
size of the nanocrystal decreases, and argued that this size dependence leads
to "self-purification" of small nanocrystals. They presented
density-functional-theory (DFT) calculations showing a strong size dependence
for Mn impurity formation energies, and proposed a general explanation. In this
Comment we show that several different DFT codes, pseudopotentials, and
exchange-correlation functionals give a markedly different result: We find no
such size dependence. More generally, we argue that formation energies are not
relevant to substitutional doping in most colloidally grown nanocrystals.Comment: 1 page, 1 figur
Anomalous light shift through quantum jumps in quasi-resonant Rayleigh scattering
An anomalous light shift in the precession of a ground-state Zeeman coherence
is observed: the Larmor frequency increases with the strength of a drive that
is blue (red) detuned from a transition out of the lower (upper) energy level.
Our measurements are made on Rb 85 atoms traversing an optical cavity
containing a few photons; shifts as large as 1% per photon are recorded. The
anomalous shift arises from an accumulation of phase driven by quantum jumps.
It is stochastic and accompanied by broadening.Comment: 5 pages, 4 figure
The Spatial Correlation of Bent-Tail Galaxies and Galaxy Clusters
We have completed a deep radio continuum survey covering 86 square degrees of
the Spitzer-South Pole Telescope deep field to test whether bent-tail galaxies
are associated with galaxy clusters. We present a new catalogue of 22 bent-tail
galaxies and a further 24 candidate bent-tail galaxies. Surprisingly, of the 8
bent-tail galaxies with photometric redshifts, only two are associated with
known clusters. While the absence of bent-tail sources in known clusters may be
explained by effects such as sensitivity, the absence of known clusters
associated with most bent-tail galaxies casts doubt upon current models of
bent-tail galaxies.Comment: Accepted by MNRA
Atom detection in a two-mode optical cavity with intermediate coupling: Autocorrelation studies
We use an optical cavity in the regime of intermediate coupling between atom
and cavity mode to detect single moving atoms. Degenerate polarization modes
allow excitation of the atoms in one mode and collection of spontaneous
emission in the other, while keeping separate the two sources of light; we
obtain a higher confidence and efficiency of detection by adding
cavity-enhanced Faraday rotation. Both methods greatly benefit from coincidence
detection of photons, attaining fidelities in excess of 99% in less than 1
microsecond. Detailed studies of the second-order intensity autocorrelation
function of light from the signal mode reveal evidence of antibunched photon
emissions and the dynamics of single-atom transits.Comment: 10 pages, 10 figures, to be published in Phys. Rev.
The ATLAS-SPT Radio Survey of Cluster Galaxies
Using a high-performance computing cluster to mosaic 4,787 pointings, we have
imaged the 100 sq. deg. South Pole Telescope (SPT) deep-field at 2.1 GHz using
the Australian Telescope Compact Array to an rms of 80 Jy and a resolution
of 8". Our goal is to generate an independent sample of radio-selected galaxy
clusters to study how the radio properties compare with cluster properties at
other wavelengths, over a wide range of redshifts in order to construct a
timeline of their evolution out to . A preliminary analysis of the
source catalogue suggests there is no spatial correlation between the clusters
identified in the SPT-SZ catalogue and our wide-angle tail galaxies.Comment: 9 pages, 4 figures. Submitted to Proceedings of Science for "The many
facets of extragalactic radio surveys: towards new scientific challenges",
Bologna, Italy 20-23 October 2015 (EXTRA-RADSUR2015
Conditional control of quantum beats in a cavity QED system
We probe a ground-state superposition that produces a quantum beat in the
intensity correlation of a two-mode cavity QED system. We mix drive with
scattered light from an atomic beam traversing the cavity, and effectively
measure the interference between the drive and the light from the atom. When a
photon escapes the cavity, and upon detection, it triggers our feedback which
modulates the drive at the same beat frequency but opposite phase for a given
time window. This results in a partial interruption of the beat oscillation in
the correlation function, that then returns to oscillate.Comment: 9 pages, 5 figures, XVII Reuni\'on Iberoamericana de \'Optica, X
Encuentro de \'Optica, L\'aseres y Aplicaciones (RIAO-OPTILAS-2010
Observation of ground-state quantum beats in atomic spontaneous emission
We report ground-state quantum beats in spontaneous emission from a
continuously driven atomic ensemble. Beats are visible only in an intensity
autocorrelation and evidence spontaneously generated coherence in radiative
decay. Our measurement realizes a quantum eraser where a first photon detection
prepares a superposition and a second erases the "which-path" information in
the intermediate state.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Letter
High flux cold Rubidium atomic beam for strongly coupled Cavity QED
This paper presents a setup capable of producing a high-flux continuous beam
of cold rubidium atoms for cavity QED experiments in the regime of strong
coupling. A 2 MOT, loaded by rubidium getters in a dry film coated vapor
cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate of 1.5 x
atoms/sec. The MM-MOT provided a continuous beam with tunable velocity. This
beam was then directed through the waist of a 280 m cavity resulting in a
Rabi splitting of more than +/- 10 MHz. The presence of sufficient number of
atoms in the cavity mode also enabled splitting in the polarization
perpendicular to the input. The cavity was in the strong coupling regime, with
parameters (g, , )/2 equal to (7, 3, 6)/ 2 MHz.Comment: Journal pape
- …
