2 research outputs found

    Discovery of porcine proteins-binding DNA aptamer through SELEX and proteomics for pork authentication

    No full text
    The authentication of meat products has become a global consumer concern in the food industry. Traditional methods such as PCR and mass spectrometry can identify and differentiate the source of meat, but they are time-consuming and require high-quality extracted DNA or protein for testing. As an alternative, aptamer-based detection tools have been introduced, but their application in food authentication is still new. To date, there is a lack of data on the development of a porcine-specific aptamer that is specifically bound to a heat-stable protein. Hence, this study was conducted to screen, characterize and validate aptamers bound to any pork protein through SELEX process, combined with Next Generation Sequencing (NGS) and Liquid Chromatography Mass Spectrometry (LC-MS) analysis. The putative porcine-specific aptamers were selected after fourteen rounds of selection using centrifugal-ultrafiltration separation technique against five negative controls. The binding affinity test revealed that APT#A1 had the highest binding affinity with a dissociation constant of 27.61 ± 1.92 nM. However, the protein blotting results showed that the selected porcine-bound aptamers were not specific and could also bind to multiple proteins from negative samples. LC-MS analysis showed that the aptamers bound to troponin and tropomyosin subunits, and these proteins have potential as target markers for future authentication studies. Future research can focus on developing aptamers with higher specificity towards porcine protein and validating their feasibility as a practical tool for food authentication in real meat-based food samples

    Increased risks of cardiovascular diseases and insulin resistance among the Orang Asli in Peninsular Malaysia

    Get PDF
    Abstract Background Despite the strategic development plan by the authorities for the Orang Asli, there are six subtribes of which their population numbers are small (less than 700). These minorities were not included in most of the health related studies published thus far. A comprehensive physiological and biomedical updates on these small subtribes in comparison to the larger subtribes and the urban Malay population is timely and important to help provide appropriate measures to prevent further reduction in the numbers of the Orang Asli. Methods A total of 191 Orang Asli from different villages in Peninsular Malaysia and 115 healthy urban Malays were recruited. Medical examinations and biochemical analyses were conducted. Framingham risk scores were determined. Data was analyzed using IBM SPSS Statistics, Version 20.0. Results A higher percentage of the Orang Asli showed high insulin levels and hsCRP compared to the healthy Malays denoting possible risk of insulin resistance. High incidences of low HDL-c levels were observed in all the Orang Asli from the six subtribes but none was detected among the urban Malays. A higher percentage of inlanders (21.1 % of the males and 4.2 % of the females) were categorized to have high Framingham Risk Score. Conclusions Orang Asli staying both in the inlands and peripheries are predisposed to cardiovascular diseases and insulin resistance diabetes mellitus. The perception of Orang Asli being healthier than the urban people no longer holds. We believed that this information is important to the relevant parties in strategizing a healthier community of the Orang Asli to avoid the vanishing of the vulnerable group(s)
    corecore