20,903 research outputs found

    Odd Parity and Line Nodes in Heavy Fermion Superconductors

    Full text link
    Group theory arguments have demonstrated that a general odd parity order parameter cannot have line nodes in the presence of spin-orbit coupling. In this paper, it is shown that these arguments do not hold on the kz=Ď€/ck_z = \pi/c zone face of a hexagonal close packed lattice. In particular, three of the six odd parity representations vanish identically on this face. This has potential relevance to the heavy fermion superconductor UPt3UPt_3.Comment: 5 pages, revte

    Photon Conserving Radiative Transfer around Point Sources in multi-dimensional Numerical Cosmology

    Get PDF
    Many questions in physical cosmology regarding the thermal and ionization history of the intergalactic medium are now successfully studied with the help of cosmological hydrodynamical simulations. Here we present a numerical method that solves the radiative transfer around point sources within a three dimensional cartesian grid. The method is energy conserving independently of resolution: this ensures the correct propagation speeds of ionization fronts. We describe the details of the algorithm, and compute as first numerical application the ionized region surrounding a mini-quasar in a cosmological density field at z=7.Comment: 5 pages, 4 figures, submitted to ApJ

    Magnetic collimation of protostellar winds into bipolar outflows

    Get PDF
    Researchers describe self-consistent 2-D magnetohydrodynamic (MHD) simulations of the collimation of an isotropic protostellar wind into bipolar outflows by magnetic stresses in the ambient medium. A variety of ambient field strengths, wind luminosities, and density profiles were studied. Collimation occurs when the energy of the magnetic field swept up by the expanding bubble approaches the bubble thermal energy. Measured axial and radial expansion rates are in good agreement with the analytical predictions of Konigl (1982)

    Inverse Spin Hall Effect by Spin Injection

    Full text link
    Motivated by a recent experiment[Nature {\bf 442}, 176 (2006)], we present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Our theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering, while its spatial variation is determined by the intrinsic spin-orbit coupling.Comment: 5 pages, 3 figure

    Hot Spots on the Fermi Surface of Bi2212: Stripes versus Superstructure

    Full text link
    In a recent paper Saini et al. have reported evidence for a pseudogap around (pi,0) at room temperature in the optimally doped superconductor Bi2212. This result is in contradiction with previous ARPES measurements. Furthermore they observed at certain points on the Fermi surface hot spots of high spectral intensity which they relate to the existence of stripes in the CuO planes. They also claim to have identified a new electronic band along Gamma-M1 whose one dimensional character provides further evidence for stripes. We demonstrate in this Comment that all the measured features can be simply understood by correctly considering the superstructure (umklapp) and shadow bands which occur in Bi2212.Comment: 1 page, revtex, 1 encapsulated postscript figure (color
    • …
    corecore