16,691 research outputs found

    Adaptive Mesh Refinement for Supersonic Molecular Cloud Turbulence

    Full text link
    We performed a series of three-dimensional numerical simulations of supersonic homogeneous Euler turbulence with adaptive mesh refinement (AMR) and effective grid resolution up to 1024^3 zones. Our experiments describe non-magnetized driven supersonic turbulent flows with an isothermal equation of state. Mesh refinement on shocks and shear is implemented to cover dynamically important structures with the highest resolution subgrids and calibrated to match the turbulence statistics obtained from the equivalent uniform grid simulations. We found that at a level of resolution slightly below 512^3, when a sufficient integral/dissipation scale separation is first achieved, the fraction of the box volume covered by the AMR subgrids first becomes smaller than unity. At the higher AMR levels subgrids start covering smaller and smaller fractions of the whole volume, which scale with the Reynolds number as Re^{-1/4}. We demonstrate the consistency of this scaling with a hypothesis that the most dynamically important structures in intermittent supersonic turbulence are strong shocks with a fractal dimension of two. We show that turbulence statistics derived from AMR simulations and simulations performed on uniform grids agree surprisingly well, even though only a fraction of the volume is covered by AMR subgrids. Based on these results, we discuss the signature of dissipative structures in the statistical properties of supersonic turbulence and their role in overall flow dynamics.Comment: 5 pages, 5 figures, revised versio

    Qualitative and quantitative analysis of mixtures of compounds containing both hydrogen and deuterium

    Get PDF
    Method allows qualitative and quantitative analysis of mixtures of partially deuterated compounds. Nuclear magnetic resonance spectroscopy determines location and amount of deuterium in organic compounds but not fully deuterated compounds. Mass spectroscopy can detect fully deuterated species but not the location

    Photon Conserving Radiative Transfer around Point Sources in multi-dimensional Numerical Cosmology

    Get PDF
    Many questions in physical cosmology regarding the thermal and ionization history of the intergalactic medium are now successfully studied with the help of cosmological hydrodynamical simulations. Here we present a numerical method that solves the radiative transfer around point sources within a three dimensional cartesian grid. The method is energy conserving independently of resolution: this ensures the correct propagation speeds of ionization fronts. We describe the details of the algorithm, and compute as first numerical application the ionized region surrounding a mini-quasar in a cosmological density field at z=7.Comment: 5 pages, 4 figures, submitted to ApJ
    corecore