156 research outputs found

    Vibrational spectra and normal coordinate analysis of neptunium (IV) borohydride and neptunium (IV) borodeuteride

    Get PDF
    Solid state, low temperature IR (25-7400 cm{sup -1}) and Raman (100-2600 cm{sup -1}) spectra were obtained for Np(BH{sub 4}){sub 4} and Np(BD{sub 4}){sub 4} from which most of the allowed fundamentals were assigned based on the T{sub d} molecular structure. Those assignments were used in a normal coordinate analysis to derive a simple force field using 8 primary and 5 interaction constants. This field is very similar to those found for Zr(BH{sb 4}){sub 4} and Hf(BH{sub 4}){sub 4}. Isotopic impurity, overtone, and combination bands were identified in the IR spectra with the help of the normal coordinate calculations. Near IR spectra of Zr(BH{sub 4}){sub 4} and Zr(BD{sub 4}({sub 4} were taken in the range 7400-4000 cm{sup -1} and the observed absorption bands were assigned as either overtone or combination levels

    Bilateral Distal Radius Fractures in a 12-Year-Old Boy after Household Electrical Shock: Case Report and Literature Summary

    Get PDF
    Background. Fracture resulting from household electric shock is uncommon. When it occurs, it is usually the result of a fall; however, electricity itself can cause sufficient tetany to produce a fracture. We present the case of bilateral fractures of the distal radii of a 12-year-old boy which were sustained after accidental shock. The literature regarding fractures after domestic electric shock is also reviewed. Methods. An Ovid-Medline search was conducted. The resultant articles and their bibliographies were surveyed for cases describing fractures resulting from a typical household-level voltage (110–220 V, 50–60 Hertz) and not a fall after the shock. Twenty-one articles describing 22 patients were identified. Results. Twenty-two cases were identified. Thirteen were unilateral injuries; 9 were bilateral. Proximal humerus fractures were most frequent (8 cases), followed by scapula fractures (7 cases), forearm fractures (4 cases), femoral neck fractures (2 cases), and vertebral body fracture (1 case). Eight of the 22 cases were diagnosed days to weeks after the injury. Conclusions. Fracture after electric shock is uncommon. It should be suspected in patients with persistent pain, particularly in the shoulder or forearm area. Distal radius fractures that occur during electrocution are likely due to tetany

    Circadian Integration of Glutamatergic Signals by Little SAAS in Novel Suprachiasmatic Circuits

    Get PDF
    Neuropeptides are critical integrative elements within the central circadian clock in the suprachiasmatic nucleus (SCN), where they mediate both cell-to-cell synchronization and phase adjustments that cause light entrainment. Forward peptidomics identified little SAAS, derived from the proSAAS prohormone, among novel SCN peptides, but its role in the SCN is poorly understood.Little SAAS localization and co-expression with established SCN neuropeptides were evaluated by immunohistochemistry using highly specific antisera and stereological analysis. Functional context was assessed relative to c-FOS induction in light-stimulated animals and on neuronal circadian rhythms in glutamate-stimulated brain slices. We found that little SAAS-expressing neurons comprise the third most abundant neuropeptidergic class (16.4%) with unusual functional circuit contexts. Little SAAS is localized within the densely retinorecipient central SCN of both rat and mouse, but not the retinohypothalamic tract (RHT). Some little SAAS colocalizes with vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), known mediators of light signals, but not arginine vasopressin (AVP). Nearly 50% of little SAAS neurons express c-FOS in response to light exposure in early night. Blockade of signals that relay light information, via NMDA receptors or VIP- and GRP-cognate receptors, has no effect on phase delays of circadian rhythms induced by little SAAS.Little SAAS relays signals downstream of light/glutamatergic signaling from eye to SCN, and independent of VIP and GRP action. These findings suggest that little SAAS forms a third SCN neuropeptidergic system, processing light information and activating phase-shifts within novel circuits of the central circadian clock

    Synchronous long-term oscillations in a synthetic gene circuit.

    Get PDF
    Synthetically engineered genetic circuits can perform a wide variety of tasks but are generally less accurate than natural systems. Here we revisit the first synthetic genetic oscillator, the repressilator, and modify it using principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. We show that this modification created highly regular and robust oscillations. Furthermore, some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them. Our results suggest that even the simplest synthetic genetic networks can achieve a precision that rivals natural systems, and emphasize the importance of noise analyses for circuit design in synthetic biology.Some work was performed at the Harvard Medical School Microfluidics Facility and the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network supported by NSF award ECS-0335765. LPT acknowledges fellowship support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec – Nature et technologies. This work was supported by NIH Grant GM095784 and NSF Award 1137676.This is the author accepted manuscript. The final version is available from Nature via https://www.nature.com/nature/journal/v538/n7626/full/nature19841.htm
    corecore