13,130 research outputs found
Arguing Using Opponent Models
Peer reviewedPostprin
Shock Waves in Solid Craters
Shock waves in solid craters and effects of high speed impact of particles on space vehicle
Fluid mechanics of waste water disposal in the ocean
Outfall pipes into the ocean are analogous to chimneys in the atmosphere: they are each intended for returning contaminated fluids to the environment in a way that promotes adequate transport and dispersion of the waste fluids. A waste-water treatment plant and an adjoining outfall constitute a system for environmental control; it is practically never feasible to provide such complete treatment that an outfall is not necessary, nor is it common to depend entirely on an outfall with no treatment.
Although outfalls and chimneys are functionally similar, there are important differences in their relationships to the coastal waters and atmosphere respectively. Urban and industrial areas, generating waste water, are located along the shallow edge of the ocean, with often tens or even hundreds of kilometers of continental shelf between the shoreline and the deep ocean. The bottom slope on the shelf is typically less than one percent. Thus outfalls extending several kilometers offshore discharge into a body of water of large lateral extent compared to the depth, and are still remote from the main body of ocean water.
In contrast, most atmospheric contaminants are introduced at the base of the atmosphere and circulate throughout the whole atmosphere much more readily. Vertical convection mixes the troposphere rapidly in most places and the wind
systems circulate the air around the globe in a matter of weeks.
Outfalls and chimneys are useful in reducing pollutant concentrations only locally. Far away from the sources, it makes little difference how the pollutants are discharged. The decay times of the pollutants are important in the choice of effective discharge strategies. For example, the problems of very persistent contaminants such as DDT cannot be alleviated by dispersion from an outfall; such pollutants must be intercepted at the source and prevented from entering the environment. On the other hand, degradable organic wastes, as in domestic sewage, may be effectively disposed of through a good ocean outfall. Since the decay time is only a few days, potential problems are only local, and not regional or global
Dynamic reasoning in a knowledge-based system
Any space based system, whether it is a robot arm assembling parts in space or an onboard system monitoring the space station, has to react to changes which cannot be foreseen. As a result, apart from having domain-specific knowledge as in current expert systems, a space based AI system should also have general principles of change. This paper presents a modal logic which can not only represent change but also reason with it. Three primitive operations, expansion, contraction and revision are introduced and axioms which specify how the knowledge base should change when the external world changes are also specified. Accordingly the notion of dynamic reasoning is introduced, which unlike the existing forms of reasoning, provide general principles of change. Dynamic reasoning is based on two main principles, namely minimize change and maximize coherence. A possible-world semantics which incorporates the above two principles is also discussed. The paper concludes by discussing how the dynamic reasoning system can be used to specify actions and hence form an integral part of an autonomous reasoning and planning system
- ā¦