741 research outputs found

    The Ursinus Weekly, June 7, 1937

    Get PDF
    Norman E. McClure is inaugurated as seventh president of Ursinus College • Brumbaugh urges seniors faith in democracy • Meminger offers seniors optimism • Edward Bell to head graduates next year • Board of Directors names new members • Guest heads forum committee under adopted constitution • Third volume of Dr. McClure\u27s Shakespeare edition completed • College physician active in medical circles, writing • Ursinus College yesterday and tomorrow • Editorial comment: The work of President McClure • Fats and Frankie need your support • Gettysburg tops league; 6 Grizzlies graduated • Gridmen start autumn training Labor Day • Brodbeck captures intramural trophy • 1936-37 summaries • Zoll, Bodley, Padden named as spring sports leaders • Netwomen win 7 out of 8; Ware captains new outfit • Tomlinson takes over reins at student council banquet • Degrees in course, Class of 1937 • Ruby out June 3; Trout wins titles • In Springtime pleases large audience Saturday • Thirteen seniors have jobs in education and business • Registrar\u27s office releases open scholarship awards • Alumni Athletic Club is headed by Malcolm Derk • Y leaders attend conclave • Professors in their childhood daze is feature of Class Day exercises • Mrs. Trinna Moser is new Ursinus Women\u27s Club head • Thirty-three hundred witness Class, Curtain Club, and Hedgerow Playershttps://digitalcommons.ursinus.edu/weekly/3101/thumbnail.jp

    Cosmological Radiation Hydrodynamics with ENZO

    Full text link
    We describe an extension of the cosmological hydrodynamics code ENZO to include the self-consistent transport of ionizing radiation modeled in the flux-limited diffusion approximation. A novel feature of our algorithm is a coupled implicit solution of radiation transport, ionization kinetics, and gas photoheating, making the timestepping for this portion of the calculation resolution independent. The implicit system is coupled to the explicit cosmological hydrodynamics through operator splitting and solved with scalable multigrid methods. We summarize the numerical method, present a verification test on cosmological Stromgren spheres, and then apply it to the problem of cosmological hydrogen reionization.Comment: 14 pages, 3 figures, to appear in Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation Hydrodynamics, Ed. I. Hubeny, American Institute of Physics (2009

    Acetylcholinesterase inhibition interacts with training to reverse spatial learning deficits after cortical impact injury

    Get PDF
    Cholinergic mechanisms are known to play a key role in cognitive functions that are profoundly altered in traumatic brain injury (TBI). The present investigation was designed to test the ability of continuous administration, starting at the time of injury, of physostigmine (PHY), an acetylcholinesterase (AChE) inhibitor that crosses the blood-brain barrier (BBB), to ameliorate the alterations of learning and memory induced by cerebral cortex impact injury in rats under isoflurane anesthesia. Learning and memory were assessed with the Morris water maze implemented during days 7-11 (WM1), and days 21-25 post-TBI (WM2), with four trials per day for 3 days, followed by target reversal and 2 additional days of training. These groups of Sprague-Dawley male rats were used: TBI treated with PHY at 3.2 μmol/kg/day (TBI-PHY3.2), or 6.4 μmol/kg/day (TBI-PHY6.4), by subcutaneous osmotic pumps, or TBI and no injury (Sham) treated with saline. AChE activity was measured in brain tissue samples of non-traumatized animals that received PHY at the doses used in the TBI animals. In WM1 tests, PHY3.2 improved learning within sessions, but not between sessions, in the recall of the target position, while PHY6.4 had no significant effects. In WM2 tests, PHY improved within- and between-sessions performance at both dose levels. We found that continuous AChE inhibition interacted with repeated training on the water maze task to completely reverse the deficits seen in learning and memory induced by TBI. The PHY treatment also reduced the amount of brain tissue loss as measured using cresyl violet staining.Fil: Scremin, Oscar Umberto. University of California at Los Angeles. School of Medicine; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Norman, Keith M.. No especifíca;Fil: Roch, Margareth. No especifíca;Fil: Holschneider, Daniel P.. No especifíca;Fil: Scremin, A. M. Erika. University of California at Los Angeles. School of Medicine; Estados Unido

    The Physiological Function of von Willebrand's Factor Depends on Its Tubular Storage in Endothelial Weibel-Palade Bodies

    Get PDF
    SummaryWeibel-Palade bodies are the 1–5 μm long rod-shaped storage organelles of endothelial cells. We have investigated the determinants and functional significance of this shape. We find that the folding of the hemostatic protein von Willebrand's factor (VWF) into tubules underpins the rod-like shape of Weibel-Palade bodies. Further, while the propeptide and the N-terminal domains of mature VWF are sufficient to form tubules, their maintenance relies on a pH-dependent interaction between the two. We show that the tubular conformation of VWF is essential for a rapid unfurling of 100 μm long, platelet-catching VWF filaments when exposed to neutral pH after exocytosis in cell culture and in living blood vessels. If tubules are disassembled prior to exocytosis, then short or tangled filaments are released and platelet recruitment is reduced. Thus, a 100-fold compaction of VWF into tubules determines the unique shape of Weibel-Palade bodies and is critical to this protein's hemostatic function

    Design innovation for the 1990's

    Get PDF
    Statement of responsibility on title-page reads: Richard K. Lester, Michael J. Driscoll, Michael W. Golay, David D. Lanning, Lawrence M. Lidsky, Norman C. Rasmussen and Neil E. Todreas"September 1983."Includes bibliographical reference

    Episodic Radiations in the Fly Tree of Life

    Get PDF
    Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore, we use micro-RNAs to resolve a node with implications for the evolution of embryonic development in Diptera. We demonstrate that flies experienced three episodes of rapid radiation—lower Diptera (220 Ma), lower Brachycera (180 Ma), and Schizophora (65 Ma)—and a number of life history transitions to hematophagy, phytophagy, and parasitism in the history of fly evolution over 260 million y

    Leveraging electronic health records for clinical research

    Get PDF
    Electronic health records (EHRs) can be a major tool in the quest to decrease costs and timelines of clinical trial research, generate better evidence for clinical decision making, and advance health care. Over the past decade, EHRs have increasingly offered opportunities to speed up, streamline, and enhance clinical research. EHRs offer a wide range of possible uses in clinical trials, including assisting with prestudy feasibility assessment, patient recruitment, and data capture in care delivery. To fully appreciate these opportunities, health care stakeholders must come together to face critical challenges in leveraging EHR data, including data quality/completeness, information security, stakeholder engagement, and increasing the scale of research infrastructure and related governance. Leaders from academia, government, industry, and professional societies representing patient, provider, researcher, industry, and regulator perspectives convened the Leveraging EHR for Clinical Research Now! Think Tank in Washington, DC (February 18-19, 2016), to identify barriers to using EHRs in clinical research and to generate potential solutions. Think tank members identified a broad range of issues surrounding the use of EHRs in research and proposed a variety of solutions. Recognizing the challenges, the participants identified the urgent need to look more deeply at previous efforts to use these data, share lessons learned, and develop a multidisciplinary agenda for best practices for using EHRs in clinical research. We report the proceedings from this think tank meeting in the following paper
    • …
    corecore