71 research outputs found
Gene Expression Analysis Reveals the Cell Cycle and Kinetochore Genes Participating in Ischemia Reperfusion Injury and Early Development in Kidney
The molecular mechanisms that mediate the ischemia-reperfusion (I/R) injury in kidney are not completely understood. It is also largely unknown whether such mechanisms overlap with those governing the early development of kidney.We performed gene expression analysis to investigate the transcriptome changes during regeneration after I/R injury in the rat (0 hr, 6 hr, 24 hr, and 120 hr after reperfusion) and early development of mouse kidney (embryonic day 16 p.c. and postnatal 1 and 7 day). Pathway analysis revealed a wide spectrum of molecular functions that may participate in the regeneration and developmental processes of kidney as well as the functional association between them. While the genes associated with cell cycle, immunity, inflammation, and apoptosis were globally activated during the regeneration after I/R injury, the genes encoding various transporters and metabolic enzymes were down-regulated. We also observed that these injury-associated molecular functions largely overlap with those of early kidney development. In particular, the up-regulation of kinases and kinesins with roles in cell division was common during regeneration and early developmental kidney as validated by real-time PCR and immunohistochemistry.In addition to the candidate genes whose up-regulation constitutes an overlapping expression signature between kidney regeneration and development, this study lays a foundation for studying the functional relationship between two biological processes
Role of KLHL3 and dietary K<sup>+</sup> in regulating KS-WNK1 expression
This is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this recordThe physiological role of the shorter isoform of WNK1 that is exclusively expressed in the kidney (KS-WNK1), with particular abundance in the distal convoluted tubule, remains elusive. KS-WNK1 despite lacking the kinase domain, is nevertheless capable of stimulating the NaCl cotransporter (NCC), apparently through activation of WNK4. It has recently been shown that a less severe form of the Familial Hyperkalemic Hypertension featuring only hyperkalemia is caused by missense mutations in the WNK1 acidic domain that preferentially affect CUL3-KLHL3 E3-induced degradation of KS-WNK1, rather than that of the full-length WNK1 (L-WNK1). Here we show that L-WNK1 is indeed less impacted by the CUL3-KLHL3 E3 ligase complex compared to KS-WNK1. We demonstrate that the unique 30 amino acid amino N-terminal fragment of KS-WNK1 is essential for its activating effect on NCC and recognition by KLHL3. We identify specific amino acid residues in this region critical for the functional effect of KS-WNK1 and KLHL3 sensitivity. To further explore this, we generated KLHL3-R528H knock-in mice that mimic human mutations causing Familial Hyperkalemic Hypertension. These mice revealed that the KLHL3 mutation specifically increased expression of KS-WNK1 in the kidney. We also observed that in wild type mice, expression of KS-WNK1 is only detectable after exposure to low potassium diet. These findings provide new insights into the regulation and function of KS-WNK1 by the CUL3-KLHL3 complex in DCT and indicate that this pathway is regulated by dietary K+ levels.National Institutes of Health (NIH)Conacyt MexicoPAPIIT UNAML'OréalMedical Research Council (MRC
The calcium-sensing receptor increases activity of the renal NCC through the WNK4-SPAK pathway
Background Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle’s loop controls Ca2+ excretion and NaCl reabsorption in response to extracellular Ca2+. However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss. Methods We used a combination of in vitro and in vivo models to examine the effects of CaSR on NCC activity. Because the KLHL3-WNK4-SPAK pathway is involved in regulating NaCl reabsorption in the DCT, we assessed the involvement of this pathway as well. Results Thiazide-sensitive 22Na+ uptake assays in Xenopus laevis oocytes revealed that NCC activity increased in a WNK4-dependent manner upon activation of CaSR with Gd3+. In HEK293 cells, treatment with the calcimimetic R-568 stimulated SPAK phosphorylation only in the presence of WNK4. The WNK4 inhibitor WNK463 also prevented this effect. Furthermore, CaSR activation in HEK293 cells led to phosphorylation of KLHL3 and WNK4 and increased WNK4 abundance and activity. Finally, acute oral administration of R-568 in mice led to the phosphorylation of NCC. Conclusions Activation of CaSR can increase NCC activity via the WNK4-SPAK pathway. It is possible that activation of CaSR by Ca2+ in the apical membrane of the DCT increases NaCl reabsorption by NCC, with the consequent, well known decrease of Ca2+ reabsorption, further promoting hypercalciuria
WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na+-Cl− cotransporter
Loss of physiological regulation of the renal thiazide-sensitive Na+-Cl− cotransporter (NCC) by mutant WNK1 or WNK4 results in pseudohypoaldosteronism type II (PHAII) characterized by arterial hypertension and hyperkalemia. WNK4 normally inhibits NCC, but this effect is lost by eliminating WNK4 catalytic activity or through PHAII-type mutations. In contrast, another member of the WNK family, WNK3, activates NCC. The positive effect of WNK3 on NCC also requires its catalytic activity. Because the opposite effects of WNK3 and WNK4 on NCC were observed in the same expression system, sequences within the WNKs should endow these kinases with their activating or inhibiting properties. To gain insight into the structure-function relationships between the WNKs and NCC, we used a chimera approach between WNK3 and WNK4 to elucidate the domain of the WNKs responsible for the effects on NCC. Chimeras were constructed by swapping the amino or carboxyl terminus domains, which flank the central kinase domain, between WNK3 and WNK4. Our results show that the effect of chimeras toward NCC follows the amino-terminal domain. Thus the amino terminus of the WNKs contains the sequences that are required for their activating or inhibiting properties on NCC
- …